
  

Algorithmic Analysis and Sorting
Part One



  

Computers use roughly 3% of all the 
electricity generated in the United States.

 

This electricity generation produces 
around 826 megatons of CO₂ each year.

 

Reducing the need for computing power – 
or using that power more wisely – could 

have a big impact on CO₂ emissions.
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Reducing the need for computing power – 
or using that power more wisely – could 

have a big impact on CO₂ emissions.



  

Fundamental Question:
 

How do we measure efficiency?



  

One Idea: Runtime



  

Runtime is Noisy

● Runtime is highly sensitive to which 
computer you’re using.

● Runtime is highly sensitive to which 
inputs you’re testing.

● Runtime is highly sensitive to external 
factors.



  

bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}

Work Done: At most k0n + k1



  

Big-Observations

● If our goal is to extrapolate out the 
runtime, we don’t need to know the 
constants in advance. We can figure them 
out by running the code.

● For “sufficiently large” inputs, only the 
dominant term matters.
● For both 4n + 1000 and n + 137, for very 

large n most of the runtime is explained by n.
● Is there a concise way of describing this?



  

Big-Observations



  

Big-ObservationsNotation

● Ignore everything except the dominant 
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)

For the mathematically inclined:
 

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ. ∃ c ∈ . ∀ℝ. ∃ n ≥ n₀. f(n) ≤ c|g(n)|

For the mathematically inclined:
 

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ. ∃ c ∈ . ∀ℝ. ∃ n ≥ n₀. f(n) ≤ c|g(n)|



  

Algorithmic Analysis with Big-O



  

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
  double total = 0.0;
  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

  return total / vec.size();
}
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Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
  double total = 0.0;
  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

  return total / vec.size();
}

O(n)

O(n) means “the runtime is 
proportional to the size of the 
input.” We’d say that this code 

runs in linear time.

O(n) means “the runtime is 
proportional to the size of the 
input.” We’d say that this code 

runs in linear time.



  

A More Interesting Example



  

A More Interesting Example

bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}

How do we analyze this?



  

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some 

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109, 

CS161, or CS265 for more information!



  

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some 
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109, 
CS161, CS365, or CS369N for more information!



  

Being Pessimistic

bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}

Worst-Case Runtime: O(n)
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Types of Analysis

Worst-Case Analysis

What's the worst possible runtime for the algorithm?

Useful for “sleeping well at night.”
● Best-Case Analysis

● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some 

cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109, 
CS161, or CS265 for more information!



  

Three Cheers for Optimism!

bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}

Best-Case Runtime: O(1)

O(1) means “the runtime doesn’t 
depend on the size of the input.” In 

the best case, this code runs in 
constant time.

O(1) means “the runtime doesn’t 
depend on the size of the input.” In 

the best case, this code runs in 
constant time.



  

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A has runtime O(n) and 

algorithm B has runtime O(n2), for very large 
inputs algorithm A will always be faster.

● If algorithm A has runtime O(n), for large 
inputs, doubling the size of the input doubles 
the runtime.



  

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)



  

Some Standard Runtime Complexities
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Growth Rates, Part II

What is this 
strange n log 
n? Stay tuned!

What is this 
strange n log 
n? Stay tuned!
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Growth Rates, Part III
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All Together Now!

Exponential 
runtimes are 

scary! Avoid them 
if at all possible.

Exponential 
runtimes are 

scary! Avoid them 
if at all possible.



  

Size 1 log₂ n n n log₂ n n² n³ 2ⁿ

1000 1ns 9.966ns 1μss 9.966μss 1ms 1s 3.4×10284 yr

2000 1ns 10.966ns 2μss 21.932μss 4ms 8s Just… wow.

3000 1ns 11.551ns 3μss 34.652μss 9ms 27s

4000 1ns 11.966ns 4μss 47.863μss 16ms 1.067min

5000 1ns 12.288ns 5μss 61.439μss 25ms 2.083min

6000 1ns 12.551ns 6μss 75.304μss 36ms 3.6min

7000 1ns 12.773ns 7μss 89.412μss 49ms 5.717min

8000 1ns 12.966ns 8μss 103.726μss 64ms 8.533min

9000 1ns 13.136ns 9μss 118.221μss 81ms 12.15min

10000 1ns 13.288ns 10μss 132.877μss 100ms 16.667min

11000 1ns 13.425ns 11μss 147.677μss 121ms 22.183min

12000 1ns 13.551ns 12μss 162.609μss 144ms 28.8min

13000 1ns 13.666ns 13μss 177.661μss 169ms 36.617min

14000 1ns 13.773ns 14μss 192.824μss 196ms 45.733min

Comparison of Runtimes
(assuming 1 operation = 1 nanosecond)



  

The Story So Far

● Big-O notation is a quantitative measure 
of how a function’s runtime scales.

● It ignores constants and lower-order 
terms. Only the fastest-growing terms 
matter.

● Big-O notation lets us predict how long a 
function will take to run.

● Big-O notation lets us quantitatively 
compare algorithms.



  

Time-Out for Announcements!



  

Programming Assignments

● Assignment 3 is due on Wednesday.
● If you’re following our timetable, you should 

be done with the Sierpinski triangle, Human 
Pyramids, and Shift Scheduling at this point 
and should be working on Riding Circuit.

● Have questions? Stop by the LaIR, email 
your section leader, or visit Piazza!

● Assignment 4 will go out on Wednesday.
● We’ll be holding YEAH Hours for this 

assignment this Wednesday at 7:00PM in 
room 380-380Y.



  

big-Onward!



  

Sorting Algorithms



  

What is sorting?



  

One style of 
“sorting,” but not 

the one we’re 
thinking about...

One style of 
“sorting,” but not 

the one we’re 
thinking about...



  
Problem: Given a list of data points, sort those data points 

into ascending / descending order by some quantity.



  

Suppose we want to rearrange a sequence 
to put elements into ascending order.

 

What are some strategies we could use?
 

How do those strategies compare?
 

Is there a “best” strategy?



  

An Initial Idea: Insertion Sort
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/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
  for (int i = 0; i < v.size(); i++) {
    /* Scan backwards until either (1) there is no
     * preceding element or the preceding element is
     * no bigger than us.
     */   
    for (int j = i - 1; j >= 0; j--) {
      if (v[j] <= v[j + 1]) break;

      /* Swap this element back one step. */
      swap(v[j], v[j + 1]);
    }
  }
}



  

How Fast is Insertion Sort?
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How Fast is Insertion Sort?

2 641 7

Work done: O(n)
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How Fast is Insertion Sort?
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How Fast is Insertion Sort?
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How Fast is Insertion Sort?

6 7421

Work Done: 1 + 2 + 3 + 4



  

If we run insertion sort on a sequence of n 
elements, we might have to do

1 + 2 + 3 + 4 + … + (n – 2) + (n – 1)

swaps. How many swaps is this?



  

1 + 2 + 3 + … + (n – 2) + (n – 1)                  

n – 1

n

= n(n – 1) / 2



  

The Complexity of Insertion Sort

● In the worst case, insertion sort takes time

     = O(n (n – 1) / 2)

     = O(n (n – 1))

     = O(n2 – n)

     = O(n2).
● Fun fact: Insertion sorting an array of 

random values takes, on average, O(n2) 
time.
● Curious why? Come talk to me after class!



  

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)



  

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might insertion sort be useful?
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