

Algorithmic Analysis and Sorting
Part One

Computers use roughly 3% of all the
electricity generated in the United States.

This electricity generation produces
around 826 megatons of CO₂ each year.

Reducing the need for computing power –
or using that power more wisely – could

have a big impact on CO₂ emissions.

Computers use roughly 3% of all the
electricity generated in the United States.

This electricity generation produces
around 826 megatons of CO₂ each year.

Reducing the need for computing power –
or using that power more wisely – could

have a big impact on CO₂ emissions.

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Runtime is Noisy

● Runtime is highly sensitive to which
computer you’re using.

● Runtime is highly sensitive to which
inputs you’re testing.

● Runtime is highly sensitive to external
factors.

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

Work Done: At most k0n + k1

Big-Observations

● If our goal is to extrapolate out the
runtime, we don’t need to know the
constants in advance. We can figure them
out by running the code.

● For “sufficiently large” inputs, only the
dominant term matters.
● For both 4n + 1000 and n + 137, for very

large n most of the runtime is explained by n.
● Is there a concise way of describing this?

Big-Observations

Big-ObservationsNotation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)

For the mathematically inclined:

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ. ∃ c ∈ . ∀ℝ. ∃ n ≥ n₀. f(n) ≤ c|g(n)|

For the mathematically inclined:

f(n) = O(g(n)) if
∃n₀ ∈ . ∃ℝ. ∃ c ∈ . ∀ℝ. ∃ n ≥ n₀. f(n) ≤ c|g(n)|

Algorithmic Analysis with Big-O

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Algorithmic Analysis with Big-O

double average(const Vector<int>& vec) {
 double total = 0.0;
 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

O(n)

O(n) means “the runtime is
proportional to the size of the
input.” We’d say that this code

runs in linear time.

O(n) means “the runtime is
proportional to the size of the
input.” We’d say that this code

runs in linear time.

A More Interesting Example

A More Interesting Example

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

How do we analyze this?

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, or CS265 for more information!

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

Best-Case Analysis

What's the best possible runtime for the algorithm?

Useful to see if the algorithm performs well in some
cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109,
CS161, CS365, or CS369N for more information!

Being Pessimistic

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

Worst-Case Runtime: O(n)

Types of Analysis

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, or CS265 for more information!

Types of Analysis

Worst-Case Analysis

What's the worst possible runtime for the algorithm?

Useful for “sleeping well at night.”
● Best-Case Analysis

● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.

Average-Case Analysis

What's the average runtime for the algorithm?

Far beyond the scope of this class; take CS109,
CS161, or CS265 for more information!

Three Cheers for Optimism!

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

Best-Case Runtime: O(1)

O(1) means “the runtime doesn’t
depend on the size of the input.” In

the best case, this code runs in
constant time.

O(1) means “the runtime doesn’t
depend on the size of the input.” In

the best case, this code runs in
constant time.

What Can Big-O Tell Us?

● Long-term behavior of a function.
● If algorithm A has runtime O(n) and

algorithm B has runtime O(n2), for very large
inputs algorithm A will always be faster.

● If algorithm A has runtime O(n), for large
inputs, doubling the size of the input doubles
the runtime.

What Can't Big-O Tell Us?

● The actual runtime of a function.
● 10100n = O(n)
● 10-100n = O(n)

● How a function behaves on small inputs.
● n3 = O(n3)
● 106 = O(1)

Some Standard Runtime Complexities

0

2

4

6

8

10

12

14

16

Growth Rates, Part I

· O(1)
· O(log n)
· O(n)

· O(1)
· O(log n)
· O(n)

0

50

100

150

200

250

· O(n)
· O(n log n)
· O(n²)

· O(n)
· O(n log n)
· O(n²)

Growth Rates, Part II

What is this
strange n log
n? Stay tuned!

What is this
strange n log
n? Stay tuned!

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

· O(n²)
· O(n³)
· O(2ⁿ)

· O(n²)
· O(n³)
· O(2ⁿ)

Growth Rates, Part III

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

· O(1)
· O(log n)
· O(n)
· O(n log n)
· O(n²)
· O(n³)
· O(2ⁿ)

· O(1)
· O(log n)
· O(n)
· O(n log n)
· O(n²)
· O(n³)
· O(2ⁿ)

All Together Now!

Exponential
runtimes are

scary! Avoid them
if at all possible.

Exponential
runtimes are

scary! Avoid them
if at all possible.

Size 1 log₂ n n n log₂ n n² n³ 2ⁿ

1000 1ns 9.966ns 1μss 9.966μss 1ms 1s 3.4×10284 yr

2000 1ns 10.966ns 2μss 21.932μss 4ms 8s Just… wow.

3000 1ns 11.551ns 3μss 34.652μss 9ms 27s

4000 1ns 11.966ns 4μss 47.863μss 16ms 1.067min

5000 1ns 12.288ns 5μss 61.439μss 25ms 2.083min

6000 1ns 12.551ns 6μss 75.304μss 36ms 3.6min

7000 1ns 12.773ns 7μss 89.412μss 49ms 5.717min

8000 1ns 12.966ns 8μss 103.726μss 64ms 8.533min

9000 1ns 13.136ns 9μss 118.221μss 81ms 12.15min

10000 1ns 13.288ns 10μss 132.877μss 100ms 16.667min

11000 1ns 13.425ns 11μss 147.677μss 121ms 22.183min

12000 1ns 13.551ns 12μss 162.609μss 144ms 28.8min

13000 1ns 13.666ns 13μss 177.661μss 169ms 36.617min

14000 1ns 13.773ns 14μss 192.824μss 196ms 45.733min

Comparison of Runtimes
(assuming 1 operation = 1 nanosecond)

The Story So Far

● Big-O notation is a quantitative measure
of how a function’s runtime scales.

● It ignores constants and lower-order
terms. Only the fastest-growing terms
matter.

● Big-O notation lets us predict how long a
function will take to run.

● Big-O notation lets us quantitatively
compare algorithms.

Time-Out for Announcements!

Programming Assignments

● Assignment 3 is due on Wednesday.
● If you’re following our timetable, you should

be done with the Sierpinski triangle, Human
Pyramids, and Shift Scheduling at this point
and should be working on Riding Circuit.

● Have questions? Stop by the LaIR, email
your section leader, or visit Piazza!

● Assignment 4 will go out on Wednesday.
● We’ll be holding YEAH Hours for this

assignment this Wednesday at 7:00PM in
room 380-380Y.

big-Onward!

Sorting Algorithms

What is sorting?

One style of
“sorting,” but not

the one we’re
thinking about...

One style of
“sorting,” but not

the one we’re
thinking about...

Problem: Given a list of data points, sort those data points

into ascending / descending order by some quantity.

Suppose we want to rearrange a sequence
to put elements into ascending order.

What are some strategies we could use?

How do those strategies compare?

Is there a “best” strategy?

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

7 2 1 64

An Initial Idea: Insertion Sort

7 2 1 64

An Initial Idea: Insertion Sort

7 2 1 64

An Initial Idea: Insertion Sort

7 2 1 64

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 64 7

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 1 674

An Initial Idea: Insertion Sort

2 6741

An Initial Idea: Insertion Sort

2 6741

An Initial Idea: Insertion Sort

2 6741

An Initial Idea: Insertion Sort

2 6741

An Initial Idea: Insertion Sort

2 641 7

An Initial Idea: Insertion Sort

2 641 7

/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
 for (int i = 0; i < v.size(); i++) {
 /* Scan backwards until either (1) there is no
 * preceding element or the preceding element is
 * no bigger than us.
 */
 for (int j = i - 1; j >= 0; j--) {
 if (v[j] <= v[j + 1]) break;

 /* Swap this element back one step. */
 swap(v[j], v[j + 1]);
 }
 }
}

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

Work done: O(n)

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 7421

How Fast is Insertion Sort?

6 7421

How Fast is Insertion Sort?

6 7421

Work Done: 1 + 2 + 3 + 4

If we run insertion sort on a sequence of n
elements, we might have to do

1 + 2 + 3 + 4 + … + (n – 2) + (n – 1)

swaps. How many swaps is this?

1 + 2 + 3 + … + (n – 2) + (n – 1)

n – 1

n

= n(n – 1) / 2

The Complexity of Insertion Sort

● In the worst case, insertion sort takes time

 = O(n (n – 1) / 2)

 = O(n (n – 1))

 = O(n2 – n)

 = O(n2).
● Fun fact: Insertion sorting an array of

random values takes, on average, O(n2)
time.
● Curious why? Come talk to me after class!

Thinking About O(n2)

14 6 3 9 7 16 2 15

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(2n) ≈ 4T(n)

Next Time

● Faster Sorting Algorithms
● Can you beat O(n2) time?

● Hybrid Sorting Algorithms
● When might insertion sort be useful?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

