Linked Lists

Part Two



Recap from Last Time



Linked Lists

» A linked list is a data structure for storing a
sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.
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A Linked List is Either..

.an empty list,
represented by ®

nullptr, Or..
a single linked list . at another linked
cell that points. list,

struct Cell {
Type data;
Cell* next;

s




Processing Lists Recursively



Processing Lists Iteratively



Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:
for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[/* .. do something with curr->value .. */

}
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Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[/* .. do something with curr->value .. */

curr
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New Stuff!



ap-op-to-sis

the death of cells which
occurs as a normal
and controlled part
of an organism's growth
or development.




Endearing C++ Quirks

» If you allocate memory using the new[] operator
(e.g. new int[137]), you have to free it using the
delete[ ] operator.

delete[] ptr;

 If you allocate memory using the new operator
(e.g. new Cell), you have to free it using the
delete operator.

delete ptr;

« Make sure to use the proper deletion
operation. Mixing these up leads to Undefined
Behavior.



Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {
delete ptr;

}
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Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!

ptr = ptr->next
delete ptr;
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Freeing a Linked List Properly

» To properly free a linked list, we have to
be able to

» destroy a cell, and
 advance to the cell after it.

 How might we accomplish this?



while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}
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Pointers and References



Prepending an Element

 Suppose that we want to write a function
that will add an element to the front of a
linked list.

« What might this function look like?
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What went wrong?
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Cell* list = nullptr;
listInsert(list, "Sartre");
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return 0;
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Pointers by Reference

* To resolve this problem, we can pass the linked
list pointer by reference.

e Our new function:

vold listInsert(Cell*& list, const string& value) {
Cell* newCell = new Cell;
newCell->value = value;
newCell->next = list;
list = newCell;
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Pointers by Reference

* To resolve this problem, we can pass the linked
list pointer by reference.

e Our new function:
Cell*& list

list = newCell;

This is a reference fo a
pointer to a Cell, If we change
where list points in this function,
The changes will stick:
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Cell* list = nullptr;
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Pointers by Reference

* If you pass a pointer into a function by
value, you can change the contents at the

object you point at, but not which object
you point at.

 If you pass a pointer into a function by
reference, you can also change which
object is pointed at.



Time-Out for Announcements!



Midterm Timetable

* You're done with the midterm exam!
Woohoo!

 We’ll be grading it over the weekend and
returning graded exams on Monday
along with stats and solutions.

« Have any questions in the meantime?
Just ask!



Assignment 5

* Assignment 5 (Data Sagas) is due one
week from today.

 We assume most of you have not yet
started, and that’s fine. Start working
through that assignment this evening
and make slow and steady progress.

 Have questions? Stop by the LalR or
CLalR!



lecture = announcements->next;



Implementing the Queue



Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?
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Implementing the Queue

 There are many ways to implement the
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Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head
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Tail Pointers
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of a linked list.

» Tail pointers make it easy and efficient to add
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Tail Pointers

* A tail pointer is a pointer to the last element

of a linked list.

» Tail pointers make it easy and efficient to add

new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head

tail
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class OurQueue {

public:
OurQueue();
~0urQueue();

int peek() const;
voild enqueue(int value);
int dequeue();

int size() const;
bool isEmpty() const;

private:
struct Cell {
int value;
Cell* next;

}s

Cell* head;

Cell* tail;
}s



Enqueuing Things

 Case 1: The queue is empty.
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Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.
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Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

Case 2: Dequeuing the last element.

head
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The Overall Analysis

 Implementing a queue using a linked list
without a tail pointer:

 Cost of an enqueue: O(n)
* Cost of a dequeue: O(1)

 Implementing a queue using a linked list
with a tail pointer:

 Cost of an enqueue: O(1)
* Cost of a dequeue: O(1)

* This is really, really tast!



Your Action Items

* Read Chapter 12 of the textbook (and,
optionally, Chapter 13).

 It'll provide more information about linked

lists, data structure implementation, and
runtime efficiency.

« Work on Assignment 5.

* At a bare minimum, read through the handout
and make sure you know what’s asked of you.

 Recommendation: Complete multiway merge
and start lower bound searching by next time.



Next Time

* Tree Structures
 Encoding trees directly in software!
 Binary Search Trees

» A fast, flexible, powerful data structure.
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