Linked Lists

Part Two

Recap from Last Time

Linked Lists

» A linked list is a data structure for storing a
sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a
sequence.

 The end of the list is marked with some special
indicator.

H1f2f137f3/,®

A Linked List is Either..

.an empty list,
represented by ®

nullptr, Or..
a single linked list . at another linked
cell that points. list,

struct Cell {
Type data;
Cell* next;

s

Processing Lists Recursively

Processing Lists Iteratively

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:
for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[/* .. do something with curr->value .. */

}

.H1f2f3f4/'®

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

curr

list

*/

S

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

list

*/

S

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

list

*/

J

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

list

*/

S

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

list

*/

S

J

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

list

*/

S

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[* .. do something with curr->value ..

}

curr

*/

list

S

S

S

ES

Linked Lists, Iteratively

* You can navigate a linked list using a
traditional for loop:

for (Cell* curr = [list; curr != nullptr; curr = curr->next) {

[/* .. do something with curr->value .. */

curr

-1 2 3 4
list f f f

New Stuff!

ap-op-to-sis

the death of cells which
occurs as a normal
and controlled part
of an organism's growth
or development.

Endearing C++ Quirks

» If you allocate memory using the new[] operator
(e.g. new int[137]), you have to free it using the
delete[] operator.

delete[] ptr;

 If you allocate memory using the new operator
(e.g. new Cell), you have to free it using the
delete operator.

delete ptr;

« Make sure to use the proper deletion
operation. Mixing these up leads to Undefined
Behavior.

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {
delete ptr;

}

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!
ptr = ptr->next
delete ptr;

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!
ptr = ptr->next
delete ptr;

tr
= 2

>

S

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!
ptr = ptr->next
delete ptr;

ptr

>

S

Freeing a Linked List

» All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

* The tollowing code triggers undefined
behavior. Don’t do this!

ptr = ptr->next
delete ptr;

Ptr . 2927

Freeing a Linked List Properly

» To properly free a linked list, we have to
be able to

» destroy a cell, and
 advance to the cell after it.

 How might we accomplish this?

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}

list

pudu: j guokka! j dikdik:

while (list != nullptr) { |

delete list;
list = next;

}

list

pudu:

guokka!

dikdik

(list '= pullpte) {
Cell* next llst >next;

list =

next

list

pudur

guokka!

dikdik

(list '= pullpte) {
Cell* next llst >next;

list =

next

list

pudur

guokka!

dikdik

next

while (list != nullptr) {

Cell* next = list-snext:
delete list;

TitSt = next;

}

list

pudu: j guokka! j dikdik:

next

while (list != nullptr) {

Cell* pext = list->pnext:
delete list;

TitSt = next;

}

list

guokka!

dikdik

next

while (list != nullptr) {

Cell* pext = list->pnext:
delete list;

TitSt = next;

}

list

guokka!

27?

dikdik

next

while (list != nullptr) {

Cell* next = list->next;

——delete Llisty
list = next;
I
list
227?

guokka!

dikdik

next

while (list != nullptr) {

Cell* next = list->next;

——delete Llisty
list = next;
I
list

guokka!

dikdik

next

while (list != nullptr) {

Cell* next = list->next;

delete list;
list = next:

}

list

guokka!

dikdik

next

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next:

}

list

guokka!

dikdik

while (list != nullptr) {

Cel(¥ next = (ilst->next;
delete list;
list = next;

}

list

guokka!

dikdik

Cell* next = list->next;

}

delete L(1st;
list = next;

list

guokka!

dikdik

Cell* next = list->next;

}

delete L(1st;
list = next;

list

guokka!

dikdik

next

while (list != nullptr) {

Cell* pext = list->pnext:
delete list;

TitSt = next;

}

list

guokka!

dikdik

next

while (list != nullptr) {
Cell* pext = list-wnext:

delete list;

TitSt = next;

}

list

222

dikdik

next

while (list != nullptr) {
Cell* next = list->next;

delete list:

list = next;
¥

list

22?

dikdik

next

while (list != nullptr) {
Cell* next = list->next;

delete list:

list = next;

¥

list

dikdik

next

while (list != nullptr) {
Cell* next = list->next;
delete list;

list = next:

}

list

dikdik

next

while (list != nullptr) {
Cell* next = list->next;
delete list;

list = next:

}

list

dikdik

while (list != nullptr) {

Cel(¥ next = (ilst->next;
delete list;
list = next;

}

list

dikdik

Cell* next = list->next;

}

delete L(1st;
list = next;

list

dikdik

Cell* next = list->next;

}

delete L(1st;
list = next;

list

dikdik

next

while (list != nullptr) {
Cell* pext = list-wnext:

delete list;

TitSt = next;

}

list

dikdik

next

while (list != nullptr) {

Cell* next = list- .
[delete list; |

TitSt = next;
}

list

27?

next

while (list != nullptr) {
Cell* next = list->next;

list:
list = next;]

b

list

227

next

while (list != nullptr) {
Cell* next = list->next;

list:
list = next;]

b

list

next

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next:

B]

list

next

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next:

B]

list

[while (list != nullptr) { |
Cel(¥ next = (ilst->next;
delete list;
list = next;

}

list

while (list != nullptr) {
Cell* next = list->next;
delete list;
list = next;

}

list

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

Pointers and References

Prepending an Element

 Suppose that we want to write a function
that will add an element to the front of a
linked list.

« What might this function look like?

list N
sunfish f whale fe/ephaw/@

Prepending an Element

 Suppose that we want to write a function
that will add an element to the front of a

linked list.

« What might this function look like?

-

list

arapalma

sunfish

S

whale

S

elephant

S

B

Prepending an Element

 Suppose that we want to write a function
that will add an element to the front of a

linked list.

« What might this function look like?

list

|

arapalma

sunfish

S

whale

S

elephant

S

B

What went wrong?

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

list

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

list

int main() {

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value = value;
newCell->next = list;
list = newCell;

int main() {

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;

newCell->value = value;
newCell->next = list;
list = newCell;

int main() {

list =

newCell

value;
list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next
newCell;

Sartre

int main() {

list =

newCell

value;
list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next

newCell;

Sartre

???

int main() {

value;

list =

newCell

list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next

newCell;

Sartre

???

int main() {

value;

list =

newCell

list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next

newCell;

Sartre

& Sartve

???

int main() {

value;

list =

newCell

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next = list;

newCell;

Sartre

& Sartve

???

int main() {

value;

list =

newCell

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next = list;

newCell;

Sartre

& Sartve

int main() {

list =

newCell

value;
list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next

newCell;

Sartre

& Sartve

int main() {

list =

newCell

value;
list;

list

value

void listInsert(Cell* 1list, const string& value) {
Cell* newCell = new Cell;
newCell->value
newCell->next

newCell;

Sartre

& Sartve

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

list

Sartre

int main() {
Cell* list = nullptr;
listInsert(list, "Sartre");
listInsert(list, "Camus");
listInsert(list, "Nietzsche");

return 0;

list

Hell is other pointerzl

Sartre

Pointers by Reference

* To resolve this problem, we can pass the linked
list pointer by reference.

e Our new function:

vold listInsert(Cell*& list, const string& value) {
Cell* newCell = new Cell;
newCell->value = value;
newCell->next = list;
list = newCell;

Pointers by Reference

* To resolve this problem, we can pass the linked
list pointer by reference.

e Our new function:
Cell*& list

list = newCell;

Pointers by Reference

* To resolve this problem, we can pass the linked
list pointer by reference.

e Our new function:
Cell*& list

list = newCell;

This is a reference fo a
pointer to a Cell, If we change
where list points in this function,
The changes will stick:

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

list

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

list

int main() { .

Cell* list = _ .
listInsert(li volid listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;

int main() { .

Cell* list = _ .
listInsert(li volid listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

???

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

???

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

The
Turtles

???

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

The
Turtles

???

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

The
Turtles

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

The
Turtles

int main() { .

Cell* list = _ .
listInsert(1id void listInsert(Cell*& list, const string& value) {
listInsert(li Cell* newCell = new Cell;
listInsert (1li: newCell->value = value;
newCell->next = list;
return 0; list = newCell;
}

newCell

The
Turtles

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

list

The
Turtles

int main() {
Cell* list = nullptr;
listInsert(list, "The Turtles");
listInsert(list, "The Beatles");
listInsert(list, "A Flock of Seaqulls");

return 0;

list

» So happy #
»» together

The
Turtles

Pointers by Reference

* If you pass a pointer into a function by
value, you can change the contents at the

object you point at, but not which object
you point at.

 If you pass a pointer into a function by
reference, you can also change which
object is pointed at.

Time-Out for Announcements!

Midterm Timetable

* You're done with the midterm exam!
Woohoo!

 We’ll be grading it over the weekend and
returning graded exams on Monday
along with stats and solutions.

« Have any questions in the meantime?
Just ask!

Assignment 5

* Assignment 5 (Data Sagas) is due one
week from today.

 We assume most of you have not yet
started, and that’s fine. Start working
through that assignment this evening
and make slow and steady progress.

 Have questions? Stop by the LalR or
CLalR!

lecture = announcements->next;

Implementing the Queue

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

4,®

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

—>» gerenuk /—®

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked

lists.

« New elements get added to the back of the list.
 Dequeued elements are taken off the front of

the list.

* Question: How efficient is this?

—>» gerenuk

impala

/

S

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

. greater
_>gerenuk/ impala / kudu /—®

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked

lists.

« New elements get added to the back of the list.
 Dequeued elements are taken off the front of

the list.

* Question: How efficient is this?

impala

—>» gerenuk /

greater

/

alpaca

/

s

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

greater

—>gerenuk/ impala / Kudu / alpaca / ?(l)?ﬂ;"sj /—®

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

greater

. slow
» impala / Kudu / alpaca / loris /—®

Implementing the Queue

 There are many ways to implement the
Queue, and a common one is to use linked
lists.

« New elements get added to the back of the list.

 Dequeued elements are taken off the front of
the list.

* Question: How efficient is this?

,| greater alpaca slow
kudu / P / loris

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head

1f2f3/—®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

1f2f3/—®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

1f2f3f4f®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

1f2f3f4f®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

2f3f4f®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

3f4f®

Tail Pointers

* A tail pointer is a pointer to the last element
of a linked list.

» Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head tail

i s

Tail Pointers

* A tail pointer is a pointer to the last element

of a linked list.

» Tail pointers make it easy and efficient to add

new elements to the back of a linked list.

 We can use tail pointers to implement an
efficient Queue using a linked list.

head

tail

-Q)-

class OurQueue {

public:
OurQueue();
~0urQueue();

int peek() const;
voild enqueue(int value);
int dequeue();

int size() const;
bool isEmpty() const;

private:
struct Cell {
int value;
Cell* next;

}s

Cell* head;

Cell* tail;
}s

Enqueuing Things

 Case 1: The queue is empty.

Enqueuing Things

 Case 1: The queue is empty.

head tail

Enqueuing Things

 Case 1: The queue is empty.

head

QO

tail

Enqueuing Things

 Case 1: The queue is empty.

head

tail

QO

Enqueuing Things

 Case 1: The queue is empty.

head tail

|
O

 Case 2: The queue is not empty.

head tail

—

Enqueuing Things

 Case 1: The queue is empty.

head

tail

O

 Case 2: The queue is not empty.

head

tail

1 / 3 / /137

Enqueuing Things

 Case 1: The queue is empty.

head

tail

O

 Case 2: The queue is not empty.

head

tail

1/3/7/137

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

S

S

tail

S

137

O

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

S

QO

S

tail

S

137

O

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

QO

S

tail

S

137

O

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

QO

tail

S

137

—

O

Case 2: Dequeuing the last element.

head

tail

137

O

Dequeuing Things

 Case 1: Dequeuing when there are 2+ elements.

head

Case 2: Dequeuing the last element.

head

QO

tail

S

137

S

O

tail

S

The Overall Analysis

 Implementing a queue using a linked list
without a tail pointer:

 Cost of an enqueue: O(n)
* Cost of a dequeue: O(1)

 Implementing a queue using a linked list
with a tail pointer:

 Cost of an enqueue: O(1)
* Cost of a dequeue: O(1)

* This is really, really tast!

Your Action Items

* Read Chapter 12 of the textbook (and,
optionally, Chapter 13).

 It'll provide more information about linked

lists, data structure implementation, and
runtime efficiency.

« Work on Assignment 5.

* At a bare minimum, read through the handout
and make sure you know what’s asked of you.

 Recommendation: Complete multiway merge
and start lower bound searching by next time.

Next Time

* Tree Structures
 Encoding trees directly in software!
 Binary Search Trees

» A fast, flexible, powerful data structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

