

Hashing

Way Back When…

int nameHash(string first, string last){
 /* This hashing scheme needs two prime numbers, a large prime and a small
 * prime. These numbers were chosen because their product is less than
 * 2^31 - kLargePrime - 1.
 */
 static const int kLargePrime = 16908799;
 static const int kSmallPrime = 127;

 int hashVal = 0;

 /* Iterate across all the characters in the first name, then the last
 * name, updating the hash at each step.
 */
 for (char ch: first + last) {
 /* Convert the input character to lower case. The numeric values of
 * lower-case letters are always less than 127.
 */
 ch = tolower(ch);
 hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
 }
 return hashVal;
}

This is a hash function. It’s a type of function some
smart math and CS people came up with.

Hash Function

Most hash functions return a number.
In CS106B, we’ll use the int type.

int hashCode(const string& input);

Hash Function

Different hash functions take inputs of different types.
For simplicity, we’ll assume this takes in a string.

int hashCode(const string& input);

Hash Function

What makes this function so special?

int hashCode(const string& input);

Hash Function

Hash Function

First, if you compute hashCode of the same string
many times, you always get the same value.

int hashCode(const string& input);

"dikdik"

"dikdik"
28156

Hash Function

Second, the hash codes of different inputs are
(usually) very different from one another.

int hashCode(const string& input);

"dikdik"

"pudu"

"dikdik"

3327

28156

Hash Function

Even very similar inputs give
very different outputs!

int hashCode(const string& input);

"dikdik"

"kudu"

"pudu"

"dikdik"

3327

13985

28156

To Recap:

Equal inputs give equal outputs.

Unequal inputs (usually) give
very different outputs.

How do servers store passwords?

htiek: Gerenuk_Quokka
rydbergk: Pudu_Dikdik
triskha8: Springbok_Kudu
 …

How do servers store passwords?

htiek: Gerenuk_Quokka
rydbergk: Pudu_Dikdik
triskha8: Springbok_Kudu
 …
htiek: Gerenuk_Quokka
rydbergk: Pudu_Dikdik
triskha8: Springbok_Kudu
 …

Hello! My name is htiek, and
my password is Gerenuk_Quokka.

Whatever that means.

How do servers store passwords?

htiek: 29157389323963039
rydbergk: 54162041201524803
triskha8: 30965171063527336
 …

My name is htiek,
and my password is,

um, hold on…

Hash Function

htiek: 29157389323963039
rydbergk: 54162041201524803
triskha8: 30965171063527336
 …

This is how passwords are typically stored.
Look up salting and hashing for details!

And look up commitment schemes if you
want to see some even cooler things!

Did my data make it through the network?

I love
you!

Did my data make it through the network?

I lave
you!

Did my data make it through the network?

I late
you!

Did my data make it through the network?

I hate
you!

Did my data make it through the network?

Hash Function

I love you!
15898193

Did my data make it through the network?

Hash Function

I lave you!
15898193

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

Hash Function

I love you!
15898193

Did my data make it through the network?

Hash Function

I love you!
15898193

Did my data make it through the network?

Hash Function

I lote you!
15898193

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

Hash Function

I love you!
15898193

Did my data make it through the network?

Hash Function

I love you!
15898193

Did my data make it through the network?

Hash Function

I love you!
15898193

This is done in practice!

Look up SHA-256, the Luhn algorithm,
and CRC32 for some examples!

And, of course, something to
do with data structures.

HashMap and HashSet

An Example: Clothes

For Large Values of n

Our Strategy

● Maintain a large number of small
collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which.)

● To find something, only look in the
bucket assigned to it (think looking for
socks.)

Our Strategy

Maintain a large number of small
collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which.)

To find something, only look in the
bucket assigned to it (think looking for
socks.)

Use a hash
function!

Use a hash
function!

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Time-Out for Announcements!

Assignment 6

● Assignment 6 (MiniBrowser) is due one week
from today.
● Make slow and steady progress on this one. That will

give you more time to think things over and process the
ideas.

● Need help? Feel free to
● ask conceptual questions on Piazza,
● stop by the LaIR for coding help,
● stop by the CLaIR for conceptual advice,
● email your section leader for their input,
● visit Kate in her office hours, or
● visit Keith in his office hours!

Back to CS106B!

How efficient is this?

Efficiency Concerns

● Each hash table operation
● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

Efficiency Concerns

● Each hash table operation
● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

...

Efficiency Concerns

● For a hash table to be fast, we need a hash
function that spreads things around nicely.

● Lots of smart people have worked on this
problem. If you need a hash function, use one
that someone else developed.
● Curious to see how? Take CS161, CS166, or CS255!

● Most programming languages come with some
built-in hash functions for basic types. There
are standard techniques for combining them
together.

Analyzing our Efficiency

● Let’s suppose we have a “strong” hash
function that distributes elements fairly evenly.

● Imagine we have b buckets and n elements in
our table.

● On average, how many elements will be in a
bucket?

Answer: n / b
● The cost of an insertion, deletion, or lookup is

therefore

O(1 + n / b).

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

Balancing these Factors

The load factor of a hash table is the
ratio of the number of elements to the

number of buckets.

That is, it’s the value of n / b.

Idea: Keep the load factor below some
constant (say, two), and increase the

number of buckets when it gets too big.

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Draco

Ginny

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Voldemort

Draco

Ginny

Hashing and Rehashing

0 1 2

Harry Hermione

Ron

Dumbledore

Voldemort

Draco

Ginny

3 4 5

Hashing and Rehashing

0 1 2

Harry Hermione

Ron

Dumbledore Voldemort

Draco

Ginny

3 4 5

Totally unrelated: look
up the term

“Voldemort Type.”

Totally unrelated: look
up the term

“Voldemort Type.”

Hashing and Rehashing

● When inserting, if n / b exceeds some small
constant (say, 2), double the number of buckets
and redistribute the elements into the new
table.
● As with Stack, this rehashing happens so

infrequently that it’s extremely fast on
average.

● This makes n / b ≤ 2, so the expected lookup
time in a hash table is O(1).

● On average, the lookup time is independent of
the total number of elements in the table!

Hashing vs. BSTs

● The cost of an insertion, lookup, or deletion in
a hash table is, on average, O(1).
● This assumes you have a good choice of hash

function. Unless you have a background in abstract
algebra, just follow a template. ☺

● This contrasts with the O(log n) operations on
Map or Set.

● Don’t pay for what you don’t use. If you
need things in sorted order, or want to perform
range searches, go with Map or Set. If you don’t
need things sorted, opt for HashMap or HashSet.

More to Explore

● Hash functions can be used to approximate the sizes of
data sets and to find frequent elements in a data stream
(cardinality estimators, count-min sketches).
● Curious? Take CS166, CS168, or CS263!

● They can also be used to find objects that are similar to
one another (locality-sensitive hashing).
● Curious? Take CS246 or CS265!

● They’re one of the key steps in blockchain technology
(SHA-256).
● Curious? Take CS251!

● They’re used to build tamperproofing for online
information and physical medicines (HMAC)
● Curious? Take CS255!

Next Time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

