
  

Graphs
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● Depth-First Search
● A different way to explore a graph.

● DAGs
● A useful type of directed graph.

● Topological Sorting
● Getting things done in the right order.



  

Recap from Last Time



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Nodes



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Representing Graphs

Node Adjacent To            

We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.

We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.



  

A B

D E

C

H

F

G I



  

A B

D E

C

H

F

G I



  

A B

D

C

H

F

G I

E



  

A B

D

C

H

F

G I

E
0

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A C

H

F

G I

E
0

1

1

B

D

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A C

H

F

G I

E
0

B

D1

1

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A

H

F

I

E
0

B

D1

1

C

GCore idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A

H

F

I

E
0

B

D1

12 2

2

C

GCore idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A

I

E
0

B

D1

12 2

2

C

G H

F

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3 4

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

Breadth-First Search

● Breadth-first search (or just BFS for short) is an 
algorithm for exploring the nodes in a graph in 
ascending order of distance from some start node.

● In pseudocode:

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}



  

New Stuff!



  

Depth-First Search



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

Depth-First Search, Again



  

How can we implement this?



  

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

Breadth-First Search

Queue: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

These nodes got here 
first, so they get 
processed first.

These nodes got here 
first, so they get 
processed first.



  

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}

Depth-First Search

Stack: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

Oooh! A shiny new 
node! Who cares 
about these ones?

Oooh! A shiny new 
node! Who cares 
about these ones?



  

For Comparison

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}



  

For Comparison

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}



  

When you see a stack-based algorithm,
think recursion!



  

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

Recursive DFS

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}



  

DFS Efficiency

● We visit each node with DFS at most once.
● Each time we visit a node, we do

● some fixed work processing the node for the 
first time, then

● some additional work processing its neighbors.

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.

Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 = O(m + n)

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.
● Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 = O(m + n)

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.
● Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 = O(m + n)

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.
● Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 = O(m + n)

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.
● Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 =      n · O(ᵐ/ₙ) + n · O(1)

 =      O(m + n).

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

DFS Efficiency

● On average, each node has roughly ᵐ/ₙ neighbors.
● Work done by DFS is

   = #nodes × average-work-per-node

 =      n    ×         (O(ᵐ/ₙ) + O(1))

 =      n · O(ᵐ/ₙ) + n · O(1)

 =      O(m + n).

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

BFS and DFS

● Running BFS or DFS from a node in a 
graph will visit the same set of nodes, 
but probably in a different order.

● BFS will visit nodes in increasing order 
of distance.

● DFS does visit nodes in some interesting 
order, but not order of distance.
● More on that later on…



  

A Whimsical Application



  

Mazes as Graphs



  

Creating a Maze with DFS

● Create a grid graph of the appropriate size.

 

  

● Starting at any node, run a depth-first search, choosing 
neighbor orderings at random.

● The resulting DFS tree is a maze with one solution.



  

Time Out for Announcements!



  

CS21SI: AI for Social Good is a 2-unit student-taught class in which students learn about 
and apply cutting-edge artificial intelligence techniques to real-world social good spaces, 
such as healthcare, government, education, and the environment.

The course alternates between lectures on machine learning theory and discussions with 
invited speakers, who will challenge students to apply techniques in their social good 
domains. You can learn more about the class here.

Apply by 11:59pm on Sunday, March 17 at bit.ly/AIForGoodApp.

http://cs21si.stanford.edu/
http://cs21si.stanford.edu/


  

Apply to the Blueprint Datathon, SHIFT's annual 
health datathon, to apply big data analytics to 
challenges in healthcare and compete for large 

cash prizes. Our 2019 theme is Infectious 
Diseases.

 

Apply @ blueprint.stanford.edu - spots are limited, 
and applicants will be accepted on a rolling basis. 
Applications are due March 22 for non-Stanford 

affiliates and April 1 for Stanford students.
 

Blueprint will take place from April 12 - 14 at 
Hewlett-Packard Building.

 

Bring your best ideas and tell your friends!

http://blueprint.stanford.edu/


  

Assignment 6

● Assignment 6 (MiniBrowser) is due this Friday.
● The following are True Facts:

● This is the last assignment on which you can use late 
days. No late submissions will be accepted for 
Assignment 7. (Sorry, that’s university policy.)

● You should be careful about using late days here, as 
that will eat into the time for Assignment 7.

● YEAH Hours for Assignment 7 will be held this 
Friday at 3PM in room 380-380Y. Slides, as 
usual, will be posted on the website afterward.



  

We Have to Go Deeper!



  

Prerequisite Structures



  

CS106A

CS106B

CS103 CS109

CS107 CS110

CS143

CS161



  



  

Wake Up In
The Morning

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up



  



  



  



  

Understand
Recursion



  

Understand
Recursion



  

Modeling Prerequisites

● We can model prerequisites as a graph 
with the following properties:
● The graph has to be directed, since we have 

to be able to distinguish “A depends on B” 
from “B depends on A.”

● The graph has to be acyclic (containing no 
cycles), since otherwise there is no way to 
accomplish all the tasks.

● A graph with this property is called a 
directed acyclic graph, or DAG.



  

Ordering Prerequisites

● Imagine we have a DAG representing a 
collection of tasks. We can only start a task 
once its prerequisite tasks have been 
completed. 

● What order should we do the tasks in?

CS106A

CS106B

CS103 CS109

CS107 CS110

CS143

CS161



  

Ordering Prerequisites

● A topological ordering of the nodes in a DAG 
is a list of the nodes so that each node is 
placed after the nodes that point to it.

● An algorithm for finding a topological ordering 
is called a topological sorting algorithm.

CS106A

CS106B

CS103 CS109

CS107 CS110

CS143

CS161

CS106A CS106B CS107 CS103 CS110 CS109 CS161 CS143



  

Ordering Prerequisites

● A topological ordering of the nodes in a DAG 
is a list of the nodes so that each node is 
placed after the nodes that point to it.

● An algorithm for finding a topological ordering 
is called a topological sorting algorithm.

CS106A

CS106B

CS103 CS109

CS107 CS110

CS143

CS161

CS106A CS106B CS103 CS109 CS161 CS107 CS143 CS110



  

Adventures in Topological Sorting
DFS Topological Sorting



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B

CS106A



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS161

CS109

CS154

CS103

Math 51

CS147

CS110

CS107

CS106B

CS106A



  

CS106A

CS106B CS103 Math 51

CS109CS107

CS110 CS161

CS166

CS154CS147

CS166

CS154

CS161

CS109

CS103

Math 51

CS106B

CS110

CS147

CS107

CS106ACS166

CS154

CS161

CS109

CS103

Math 51

CS106B

CS110

CS147

CS107

CS106A



  

Topological Sort via DFS

dfs-topological-sort() {
    result = []
    for each node in the graph, in whatever order sparks joy:
        run a recursive DFS starting from that node.
        when you finish visiting a node, append it to result.
    return the reverse of result

dfs-topological-sort() {
    result = []
    for each node in the graph, in whatever order sparks joy:
        run a recursive DFS starting from that node.
        when you finish visiting a node, append it to result.
    return the reverse of result

● Here’s a beautiful algorithm for topologically 
sorting a graph:

● If you’re clever with how you implement this, 
the runtime ends up being O(m + n).



  

Why Does This Work?

● Intuition: Given a node v, a topological ordering 
needs to place v before a topological ordering of 
everything that depends on v.

● Running a DFS orders everything that depends on v 
before ordering v.

● Reversing things at the end is equivalent to always 
prepending v to the result rather than appending v to 
the result.



  

Your Action Items

● Aim to finish MiniBrowser.
● Again, you can use late days, but be careful 

about doing so.
● Read Chapter 18 of the textbook.

● There’s a bunch of goodies in there about 
graph representations and graph algorithms.



  

Next Time

● More Graph Algorithms
● Which ones? Wait and see!


