

The Big Picture

Please Evaluate this Course on Axess
Your comments really make a difference.

Final Exam Logistics

● Our final exam is next Monday, March 18th from
8:30AM – 11:30AM.
● Locations TBA.

● This is a cumulative exam; all topics from all lectures and all
assignments are fair game.
● Concepts purely from the textbook will not be tested, though reading

the textbook is not a bad idea.
● Focus is on concepts you explored on the assignments.

● The exam is administered through BlueBook. As with the
midterm, we’ll give out a notes sheet. It will go up on the course
website by tomorrow evening.

● The exam is closed-book and limited-note. You can bring one
double-sided sheet of 8.5” × 11” paper with you to the exam,
decorated however you’d like.

Practice Final Exam

● We’ve posted a BlueBook practice final exam to
the course website under the “exams” section.

● This is the final exam we gave out in Winter
2017. We can’t guarantee that the actual exam
will match the format of this practice final, but
it’s probably the best indicator of the shape of
things to come.

● Recommendation: Ping your section leader
and set up a time to review your answers to the
problems. Ask for honest and polite feedback.

Preparing for the Exam

● We’d like everyone to be as prepared as possible going
into the final exam. Here are some suggestions of how to
prepare:
● Section: This week’s section is designed as an open-ended

review. Section Handout 9 contains a huge number of problems
from all the topics we’ve covered this quarter.

● Midterm: Review your midterm, ideally with your section
leader. See where your strengths and weaknesses are, and focus
on those. If you haven’t yet, download the starter files and see if
you can get your code into a fully working state.

● Code Step By Step: Work through practice problems on any
and all topics that seem most relevant for you. This is a great
resource for practicing your coding and seeing strategies for
solving problems.

● Practice Final: If you can, take it under realistic conditions as
soon as possible to identify where to focus your efforts.

CS2 Post-Test

● Cynthia Lee is working on a national
effort to make a standardized CS2 post-
test.

● The test she’s designed is different in
format from our final exam, but hits on
many of the same topics.

● You’re welcome to stick around after
class to work through the exam if you’d
like. We’ll give more details when that
rolls around.

The Big Picture

Today’s Format

● We’ll spend a few minutes recapping each
of the major topics from the course.

● After each section, we’ll provide some
questions that we recommend thinking
through / working through as you’re
studying for the final exam.

● To clarify: this is not us giving you a giant
list of possible final exam questions to
commit to memory. Rather, these questions
are designed to help focus your efforts as
you prep for the final.

Week 1: Functions and Recursion

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
}

int digitalRootOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return digitalRootOf(sumOfDigitsOf(n));
 }
}

string reverseOf(string input) {
 if (input == "") {
 return "";
 } else {
 return reverseOf(input.substr(1)) + input[0];
 }
}

bool areComplementary(string one, string two) {
 if (one == "" && two == "") {
 return true;
 } else if (one == "" || one == "") {
 return false;
 } else if (!pairsWith(one[0], two[0])) {
 return false;
 } else {
 return areComplementary(one.substr(1), two.substr(1));
 }
}

Questions to Ponder
● Is it safe to change the recursive case of sumOfDigitsOf to read as follows?

return (n % 10) + sumOfDigitsOf(n / 10);

● Is it safe to change the recursive case of reverseOf to the following?

return input[0] + reverseOf(input.substr(1));

● The space complexity of a piece of code is the amount of memory used
when executing that code. Using big-O notation, give the space
complexity of the recursive factorial and sumOfDigitsOf functions.

● We covered these functions before discussing pass-by-reference. Which
functions need to be changed? Why?

● What happens if you reorder the first two base cases in the
areComplementary function?

● Many recursive functions that work on sequences can be rewritten to
leave the sequence unmodified and instead pass an extra index
parameter down the recursion chain indicating where the next item to
process is. Which of these string recursions can be rewritten that way?
What would that look like?

Week 2: Container Types

Buying Cell Towers

137

×
106

✓
107

×
166

✓
103

×
261

×
109

✓

People Covered: 106 + 166 + 109 = 381.

Towers can’t be built
in two adjacent cities.

Towers can’t be built
in two adjacent cities.

14 22 13 14 22 13

22 13

13

13

No Yes

No Yes

No Yes

No Yes

Include 14?

Include 22?

Include 13?

Include 13?

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB" "BA" "BB"

Anagrams

● Two words are anagrams of one another
if the letters in one can be rearranged
into the other.

● What you told us: anagrams in Bambara:
● lamaga (to stir) / galama (a ladle made out of

a particular kind of gourd)
● denso (womb/guts) / sedon (“d-day”, the day

someone arrives or something starts) / soden
(a room in a home)

Credit: Caroline Condon

Questions to Ponder

● How does the cell towers problem fit into our
framework of recursive exploration and decision
trees?

● Why, intuitively, are nested parentheses modeled by
a Stack rather than a Queue?

● How does the breadth-first search we used to print
out all possible strings relate to the breadth-first
search we saw in graph theory?

● How does the Crystals assignment relate to breadth-
first search?

● In finding anagram clusters, we rearranged the
characters in strings into sorted order. What sorting
algorithm would you recommend for this case? Why?

Week 3: Enumeration / Optimization

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Each decision is of
the form “do I pick

this element?”

Each decision is of
the form “do I pick

this element?”

void listSubsetsRec(const Set<int>& remaining,
 const Set<int>& used) {

 if (remaining.isEmpty()) {
 cout << used << endl;
 } else {
 int elem = remaining.first();

 /* Option 1: Include this element. */
 listSubsetsRec(remaining - elem, used + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining - elem, used);
 }
}

List all permutations of
{A, H, I}

List all permutations of
{A, H, I}

Each decision is of
the form “what do I

pick next?”

Each decision is of
the form “what do I

pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

void listPermutationsRec(const string& remaining,
 const string& used) {

 if (remaining == "") {
 cout << used << endl;
 } else {
 /* Decide what comes next. */
 for (int i = 0; i < remaining.size(); i++) {
 listPermutationsRec(remaining.substr(0, i) +
 remaining.substr(i + 1),
 used + remaining[i]);
 }
}

Judicial Decisions

Pick 4 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { Kagan }

Pick 5 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { }

Pick 5 Justices out of
{Kagan, Breyer, …, Thomas}

Chosen so far: { }

Include
Elena Kagan

 Exclude
 Elena Kagan

void listCombinationsRec(const Set<int>& remaining, int k,
 const Set<int>& used) {
 if (k == 0) {
 cout << used << endl;
 } else if (remaining.isEmpty() || k > remaining.size()) {
 return; // Can't succeed.
 } else {
 int elem = remaining.first();

 /* Option 1: Exclude this element. */
 listCombinationsRec(remaining – elem, k, used);

 /* Option 2: Include this element. */
 listCombinationsRec(remaining - elems, k - 1, used + elem);
 }
}

struct Person {
 string name;
 int power;
};

struct Person {
 string name;
 int power;
};

struct Teams {
 Set<Person> one;
 Set<Person> two;
};

struct Teams {
 Set<Person> one;
 Set<Person> two;
}; A?

C?

{A,B,C}
{ }

{A, B}
{C}

{A, C}
{B}

{A}
{B, C}

{B, C}
{A}

{B}
{A, C}

{C}
{A, B}

{ }
{A,B,C}

C? C? C?

B? B?

1 2

1

1

1 1 1 2 2 2

 2 21

 2

{A, B}
{ }

{A}
{B}

{B}
{A}

{ }
{A, B}

{A}
{ }

{ }
{A}

{ }
{ }

Teams bestTeamsRec(const Set<Person>& remaining,
 const Teams& soFar) {
 if (remaining.isEmpty()) {
 return soFar;
 } else {
 Person curr = remaining.first();

 /* Option 1: Put this person on Team 1. */
 Teams best1 = bestTeamsRec(remaining – curr,
 { soFar.one + curr, soFar.two });

 /* Option 2: Put this person on Team 2. */
 Teams best2 = bestTeamsRec(remaining – curr,
 { soFar.one, soFar.two + curr });

 if (imbalanceOf(best1) < imbalanceOf(best2)) {
 return best1;
 } else {
 return best2;
 }
 }
}

Teams bestTeamsRec(const Set<Person>& remaining,
 const Teams& soFar);

What are the
best teams…
What are the
best teams… … you can make from

these people …
… you can make from

these people …

… given that some people
are already placed on

those teams?

… given that some people
are already placed on

those teams?

A?

C?

{A,B,C}
{ }

{A, B}
{C}

{A, C}
{B}

{A}
{B, C}

{B, C}
{A}

{B}
{A, C}

{C}
{A, B}

{ }
{A,B,C}

C? C? C?

1 2

1

1

1 1 1 2 2 2

 2 21

 2

List all ways to
split {A, B, C} into

two teams.

List all ways to
split {A, B, C} into

two teams.

{A, B}
{ }

{A}
{B}

{B}
{A}

{ }
{A, B}

{A}
{ }

{ }
{A}

{ }
{ }

B?B?

Questions to Ponder
● Why do these problems have the decision trees that they have? Why

does each problem’s decision tree not work for the other problems?
● Using the decision trees as a starting point, why is each recursive

function structured the way it is? For example, why is there a for
loop in the recursion for permutations but not for subsets,
combinations, or tug-of-war?

● What happens if you swap the two base cases in the recursive
combinations logic?

● Why, intuitively, does forcing the first person onto the first team cut
the work down in tug-of-war by one half?

● We implemented our recursive subsets code by calling Set::first to
pick out some element to remove. The set is backed by a BST. Which
element does this mean we’re picking out? Based on that, can you
predict the order in which the subsets are listed?

● Are our recursive exploration functions closer to breadth-first search
or depth-first search? Why?

Week 4: Backtracking

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkable(const string& word, const Lexicon& english) {
 if (!english.contains(word)) return false;
 if (word.length() == 1) return true;

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

p r o g r a m
l a d r o n e
a v i a t o r
c e s t o d e
e n t e r e r

ScoundrelScoundrel
TapewormTapeworm

Person who
writes odes

Person who
writes odes

Where current
flows in

Where current
flows in

More than mere,
less than merest

More than mere,
less than merest

What You Discovered

s p l i t
e r o d e
a e r o s
s p e l t

Credit: Jose Francisco

Questions to Ponder

● Why is the return statement in recursive backtracking
guarded by an if statement?

● There’s an asymmetry in backtracking: if the subcall works,
we return true, but if it fails we don’t return false. Why not?

● We optimized our crossword search by using
Lexicon::containsPrefix. How is the Lexicon implemented?
How is Lexicon::containsPrefix implemented? How fast is it?

● Model the shrinkable words problem as a graph search
problem. What would the nodes be? What would the edges
be? Is the recursive function closer to breadth-first search
or depth-first search?

● How would you find all possible ways to shrink a word down
to a single-letter word?

Week 5: Big-O and Sorting

Big-ObservationsNotation

● Ignore everything except the dominant
growth term, including constant factors.

● Examples:
● 4n + 4 = O(n)
● 137n + 271 = O(n)
● n2 + 3n + 4 = O(n2)
● 2n + n3 = O(2n)

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
 for (int i = 0; i < v.size(); i++) {
 /* Scan backwards until either (1) there is no
 * preceding element or the preceding element is
 * no bigger than us.
 */
 for (int j = i - 1; j >= 0; j--) {
 if (v[j] <= v[j + 1]) break;

 /* Swap this element back one step. */
 swap(v[j], v[j + 1]);
 }
 }
}

n

n

2n

2n

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)

O(n)

O(n)

O(n)

O(n)

There are O(log n) levels in the recursion.

Each level does O(n) work.

Total work done: O(n log n).

bool binarySearchRec(const Vector<int>& elems, int key,
 int low, int high) {
 /* Base case: If we're out of elements, horror of horrors!
 * Our element does not exist.
 */
 if (low == high) return false;

 /* Probe the middle element. */
 int mid = low + (high - low) / 2;

 /* We might find what we're looking for! */
 if (key == elems[mid]) return true;

 /* Otherwise, discard half the elements and search
 * the appropriate section.
 */
 if (key < elems[mid]) {
 return binarySearchRec(elems, key, low, mid);
 } else {
 return binarySearchRec(elems, key, mid + 1, high);
 }
}

bool binarySearch(const Vector<int>& elems, int key) {
 return binarySearchRec(elems, key, 0, elems.size());
}

Questions to Ponder
● Express the volume of a sphere in big-O notation as a function of its radius r.
● If it takes k seconds to insertion sort 100,000 elements in random order, how

long should it take to insertion sort 1,000,000 elements in random order?
● Does your answer change if the elements are in ascending order?
● Does your answer change if the elements are in descending order?

● Suppose you run insertion sort on an array of random values and pause it
exactly halfway into its execution. What would you expect to see in the array at
that point in time?

● How many recursive calls are made when using merge sort on an array of n
elements? You can assume n is a power of two.

● Suppose you merge two sorted arrays where the smallest element of the second
array is bigger than the largest element of the first array. What happens? Using
that, modify mergesort so that it runs in time O(n) on already-sorted inputs.

● Ternary search is like binary search, except that instead of picking the middle
element, you pick elements at the ¹/₃ and ²/₃ points in the array and recursively
explore just one third. Implement ternary search.

● What happens if you use mergesort, but split the array into thirds instead of
halves? Does that change the big-O runtime? Code this variation up.

Week 6: Class Design

Interface
(What it looks like)

Classes

● Vector, Stack, Queue,
Map, etc. are classes in
C++.

● Classes contain
● an interface specifying

what operations can be
performed on instances
of the class, and

● an implementation
specifying how those
operations are to be
performed.

Interface
(What it looks like)

Implementation
(How it works)

#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
 elems += value;
}

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("Aaaaahhh!");
 }

 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);

 return result;
}

int RandomBag::size() const {
 return elems.size();
}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

void OurStack::grow() {
 allocatedLength *= 2;
 int* newElems = new int[allocatedLength];

 for (int i = 0; i < size(); i++) {
 newElems[i] = elems[i];
 }

 delete[] elems;
 elems = newElems;
}

Questions to Ponder
● What does it mean for a member function to be const?
● What’s a destructor? When is it invoked?
● What happens if we swap the first two lines of OurStack::grow()?
● Why can we use the size() member function when implementing
OurStack::grow()?

● Why can we use the elems variable after we delete[] it in grow?
● Why is it faster to double the size of the elements array than to

increase its size by one or two when it grows?
● Why don’t we just make that array significantly bigger each time,

say, by squaring its size?
● How do you think Vector is implemented internally? Go and build

it for yourself, supporting the Vector::add, Vector::remove, and
Vector::get functions.

● Explain why the average cost of pushing an element onto a Stack
is O(1), while the worst-case cost is still O(n).

Week 7: Linked Lists

…an empty list,
represented by
nullptr, or…

a single linked list
cell that points…

… at another linked
list.

A Linked List is Either…

void printList(Cell* list) {
 if (list == nullptr) return;

 cout << list->value << endl;
 printList(list->next);
}

Linked Lists, Iteratively

● You can also navigate a linked list using a
traditional for loop:
for (Cell* curr = list; curr != nullptr; curr = curr->next) {

 /* … do something with curr->value … */

}

1 2 43
list

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

Questions to Ponder

● What’s one advantage of a linked list over a dynamic array?
● What’s one advantage of a dynamic array over a linked list?
● What happens if you swap the last two lines of the recursive

function to print a linked list? Why?
● Why can’t you use the standard for loop to delete all the

elements of a linked list?
● What’s the space complexity of deleting a linked list recursively?
● When do you need to pass pointers into functions by reference?
● What’s a tail pointer? When are they useful?
● What’s a doubly-linked list? When would you use one?
● Implement the Stack using a linked list.
● Implement the Queue using a dynamic array, keeping the average

cost of each operation at O(1).

Week 8: BSTs and Tries

106

103

51

5241

110

108

107 109

166

154

143 161

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Tree Traversals

● In an inorder traversal, we visit
● the left subtree, then
● the node itself, then
● the right subtree.

● In a postorder traversal, we visit
● the left subtree, then
● the right subtree, then
● the node itself.

Efficiency Questions

● The time to add
an element to a
BST (or look up
an element in a
BST) depends
on the height
of the tree.

● The runtime is
O(h), where h
is the height of
the tree.

4

2

1 3

6

5 7

1
2

3
4

5
6

7

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

a b c d

b

o

u

t

 d

 a

 g

e i

 o

a

r

d n

 e

d t

 a

a

n

e

 t

i

k

 a

 t

i

k

d t

A Trie is Either…
an empty trie,
represented by
nullptr, or…

q x

…

 z

a single node,
which might be
marked as a

word…

… with some
number of child
tries labeled by

letters.
…

Questions to Ponder
● What is the largest possible height for a BST with n nodes? What’s the

smallest possible height for a BST with n nodes?
● Is it ever possible for a tree to be both a BST and a binary heap?
● Is it ever possible for a tree to be both a BST and a doubly-linked list (with

“left” and “right” taking on the roles of “previous” and “next?”
● In what cases will you get the nodes in a BST back in sorted order if you use

an inorder traversal?
● In what cases will you get back the nodes in a BST back in sorted order if you

use a postorder traversal?
● In what cases will inserting a new node into a BST increase its height?
● Why is the runtime of inserting or looking up an element in a BST O(h), where

h is the height of a tree?
● Why isn’t the runtime of a range search or inorder traversal O(h)?
● Give five ways to represent a node in a trie. Explain the pros and cons of each.
● Are the letters in a trie written on the nodes in the trie or on the edges?
● Give one advantage of a BST over a trie.
● Give one advantage of a trie over a BST.

Week 9: Hashing and Graphs

Equal inputs give equal outputs.

Unequal inputs (usually) give
very different outputs.

Hash Function

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

The more buckets we
have, the less work we

have to do.

The more buckets we
have, the less work we

have to do.

O(1 + n / b)

The more elements we
have, the more work we

have to do.

The more elements we
have, the more work we

have to do.

If we have way more
buckets than elements,

we waste space.

If we have way more
buckets than elements,

we waste space.

O(1 + n / b)

If we have way more
elements than buckets,

we waste time.

If we have way more
elements than buckets,

we waste time.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Node Adjacent To

We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

dfs-from(node v) {
 if this is first time we've called dfs-from(v):
 process node v
 for each node adjacent to v:
 call dfs-from on that node
}

dfs-from(node v) {
 if this is first time we've called dfs-from(v):
 process node v
 for each node adjacent to v:
 call dfs-from on that node
}

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

Cost:
1 + 3 + 5 + 4 + 1 + 6 + 2 = 22

A spanning tree in an undirected
graph is a set of edges with

no cycles that connects all nodes.

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Kruskal’s Algorithm:

Remove all edges from the graph.

Repeatedly find the cheapest edge that
doesn’t create a cycle and add it back.

The result is an MST of the overall graph.

Questions to Ponder
● Why is there the for loop in the code for inserting into a hash table?
● What’s one advantage of an adjacency list over an adjacency matrix?
● If you run BFS or DFS from some starting node in a graph, what nodes will be visited

when the search ends?
● Why do BFS and DFS run in time O(m + n)?
● Under what circumstances will BFS find the shortest path from the start node to each

other node in the graph?
● Under what circumstances will DFS find the shortest path from the start node to each

other node in the graph?
● Find a graph where no matter where you start searching from, DFS and BFS will always

visit the nodes in a different order.
● Find a graph where no matter where you start searching from, DFS and BFS will always

visit the nodes in the same order.
● Under what circumstances will Kruskal’s algorithm find a tree that gives the shortest

paths from some node to each other node?
● Both BFS and DFS can be used to create spanning trees by choosing the edges that first

discover new nodes. How are those spanning trees similar? How are they different?
● You can also perform a topological sort by finding a node with no incoming edges,

removing it, and appending it to the result until no nodes remain. Code this up. Can you
make it run in time O(m + n)?

Week 10: Wrap-Up!

Questions to Ponder

● What’s something you know now that, at
the start of the quarter, you knew you
didn’t know?

● What’s something you know now that, at
the start of the quarter, you didn’t know
you didn’t know?

● What’s something you don’t know now
that, at the start of the quarter, you
didn’t know you didn’t know?

Climbing a Mountain

Next Time

● What Can You Do Now?
● What you can do is magic. Don’t ever lose

sight of that.
● Where to Go from Here

● What’s next in computer science?
● Final Thoughts

● Valedictions, send-offs, and commencements.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

