YEAH! Hours -

Recursion

Part 1 - Sierpinski Triangle

- Order O triangle is just a filled in triangle
- Order n triangle consists of three n-1 triangle, half as large as the main triangle, each

A L O 50 0

Order 0 Order 1 Order 2 Order 3 Order 4

Part 1 - Sierpinski Triangle

You are given the helper function to actually draw the triangle once you know the

coordinates

- Your job: recursively determine the coordinates for the triangles in an order n Sierpinski
triangle

- Tips: Draw pictures to help you determine how to calculate the coordinates, don’t guess

until you get the coordinates right!

Part 2 - Human Pyramids

Each person splits their weight with evenly with the two
people below them on the pyramid.

- Person A (Coordinates 0,0): 0 pounds

- Person B (1,0): % of A

- Person E (2,1): % of B + % of C (which includes weight added
from person A)

- Notice those on the edges will have less total weight than

those in the middle
- For example, person D is only holding up person B, while person
E is holding up people C and B.

Part 2 - Human Pyramids
int weightOnBackOf(int row, int col);

- Each Person weighs 160 pounds
- If the given row/col is out of bounds, throw an error
- Tips: Write additional tests!

- Write out what some of the support weights would be, it will help you find the recursive
pattern!

Part 2 - Human Pyramids: A (mandatory)

optimization

Calculating the weight supported by each person will take a long time without memoization; your
code will timeout

Memoization: Allows you to avoid redundant recursive calls and significantly speeds up your
algorithm, especially when the size of the pyramid increases.

Use a table to keep track of what weights you have already calculated, your new function will look

something like this: Ret recursiveFunction(Arg a, Table& table) {
if (base-case-holds) {
return base-case-value;
} else if (table contains a) {
return table[a];
} else {
do-some-work;
table[a] = recursive-step-value;
return recursive-step-value;
}
}

Part 3 - Shift Scheduling

Set<Shift> highestValueScheduleFor(const Set<Shift>& shifts, int maxHours);

- Your Job: given a set of possible shifts accompanied by value they produce, optimize the business's
revenue

- Shifts cannot overlap; the worker cannot work more than maxHours, but can work less.

- Some functions of the struct Shift (as defined in struct.h) that you may find useful

int lengthOf(const Shift& shift); // Returns the length of a shift.
int valueOf(const Shift& shift); // Returns the value of this shift.

bool overlapsWith(const Shift& one, // Returns whether two shifts overlap.
const Shift& two);

Part 3 - Shift Scheduling

What type of recursive problem is this? Think about what type of problem it is before you try to solve
it

- Look to lecture and section examples for some good suggestions on how to tackle this problem

- Testasyougo

- The optimal shift schedule does not necessarily have the worker working for maxHours or working the
shift with the highest values

Part 4 - Riding Circuit

Your job: Minimize travel time using Manhattan distance

|X1 —.X.'2| . 2 |y1 —_ y2|.

0,0) (5,0)

@
2, 2)© @(3, 2)
®®

(2.3 (3,3)

© @)

Part 4 - Riding Circuit

Vector<Point> bestCircuitThrough(const Vetor<Point>& points);

- Find the path with the smallest total Manhattan distance
- You must visit every point in the points Vector, but you can visit them in any order

- You can start at any point

- Your return Vector should only contain one copy of each point, even though you will technically be
returning to the starting point, do not add it twice. Keep this in mind while designing your recursive
solution

There will be multiple optimal paths- choose any one of them.

In General:

You must use recursion for every problem
- Test often, add tests of your own, be wary of edge cases and how optimizations will affect your
solution

Start early and use the LAIR!

