
Assignment 6:
“Minibrowser”

Juliette Woodrow, Ethan Chi



What is MiniBrowser?
● You build your own “mini” browser that loads Wikipedia articles!
● We handle:

○ the downloading articles from Wikipedia part
● You handle:

○ the browser history
○ the autocomplete search function
○ rendering lines on the screen!

● Uses linked lists and pointers heavily





2) autocomplete

3) LineManager

1) browser history



Part 1: Browser History



Overview



Overview
Goal: Implement a history object to keep track of web browser history  



Overview
Goal: Implement a history object to keep track of web browser history  

Kind of like what Google Chrome has for each user! 



Overview
Goal: Implement a history object to keep track of web browser history  

Kind of like what Google Chrome has for each user! 

Check out my 
history from 
Monday! 



Overview
Goal: Implement a history object to keep track of web browser history  



Overview
Goal: Implement a history object to keep track of web browser history  



Overview
Goal: Implement a history object to keep track of web browser history  

● Constructor
 
● ~Destructor 

● 5 public 
methods 



Let’s Look at an Example...



Imagine a 106b student is using our browser



Imagine a 106b student is using our browser

Assignment 6

Current Page

history.goToNewPage(“cs106b assignment 6”);



Imagine a 106b student is using our browser

Assignment 6

Current Page

Pointers?

history.goToNewPage(“cs106b assignment 6”);

history.goToNewPage(“pointer”);



Imagine a 106b student is using our browser

Assignment 6

Current Page

Pointers?

history.goToNewPage(“cs106b assignment 6”);

history.goToNewPage(“pointer”);

history.goToNewPage(“bucket of baby sloths”);

https://www.youtube.com/watch?v=R0V_D4zaEpU


Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 6”);

history.goToNewPage(“pointer”);

history.goToNewPage(“bucket of baby sloths”);

history.goBack();  

Assignment 6

Current Page

Pointers?

https://www.youtube.com/watch?v=R0V_D4zaEpU


Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 6”);

history.goToNewPage(“pointer”);

history.goToNewPage(“bucket of baby sloths”);

history.goBack();  x2

Assignment 6

Current Page

Pointers?

https://www.youtube.com/watch?v=R0V_D4zaEpU


Imagine a 106b student is using our browser
What will happen if they type: 

history.goToNewPage(“keith schwarz”);  ???

Assignment 6

Current Page

Pointers?

https://www.youtube.com/watch?v=R0V_D4zaEpU


Imagine a 106b student is using our browser
history.goToNewPage(“keith schwarz”);

Assignment 6

Current Page

keith schwarz



Let’s look at the Public Methods



goToNewPage(const std::string& page) 



goToNewPage(const std::string& page) 

Assignment 6

Current Page

Pointers?

https://www.youtube.com/watch?v=R0V_D4zaEpU


goToNewPage(const std::string& page) 

Assignment 6

Current Page

Pointers?

We are going to walk through what happens when the 
user attempts: 

history.goToNewPage(“keith schwarz”); 

https://www.youtube.com/watch?v=R0V_D4zaEpU


goToNewPage(const std::string& page) 

Assignment 6

Current Page

Pointers?

● If there are any pages forward of the current page in history clear them out.

https://www.youtube.com/watch?v=R0V_D4zaEpU


goToNewPage(const std::string& page) 

Assignment 6

Current Page

● If there are any pages forward of the current page in history clear them out.



goToNewPage(const std::string& page) 

Assignment 6

Current Page

● If there are any pages forward of the current page in history clear them out.
● Append the new page to the end of the history.



goToNewPage(const std::string& page) 

Assignment 6

Current Page

keith schwarz

● If there are any pages forward of the current page in history clear them out.
● Append the new page to the end of the history. 



goToNewPage(const std::string& page) 

Assignment 6

Current Page

keith schwarz

● If there are any pages forward of the current page in history clear them out.
● Append the new page to the end of the history. 
● Update the current page to be the new page



goToNewPage(const std::string& page) 

Assignment 6

Current Page

keith schwarz

● If there are any pages forward of the current page in history clear them out.
● Append the new page to the end of the history. 
● Update the current page to be the new page





hasForward() 



hasForward() 
● If there is a page after the current one, return true 



hasForward() 
● If there is a page after the current one, return true

 
● If this is the last in the list, return false 



hasForward()

Assignment 6

Current Page

keith schwarz

● If there is a page after the current one, return true
 

● If this is the last in the list, return false 



hasForward()

Assignment 6

Current Page

keith schwarz

● If there is a page after the current one, return true
 

● If this is the last in the list, return false 

hasForward() = true



hasForward()
● If there is a page after the current one, return true

 
● If this is the last in the list, return false 



hasForward()
● If there is a page after the current one, return true

 
● If this is the last in the list, return false 

hasForward() = false





hasBackward()



hasBackward()
● If there is a page before the current one, return true

 



hasBackward()
● If there is a page before the current one, return true

● If this is the first in the list, return false
 



hasBackward()

Assignment 6

Current Page

keith schwarz

● If there is a page before the current one, return true
 

● If this is the first in the list, return false 



hasBackward()

Assignment 6

Current Page

keith schwarz

● If there is a page before the current one, return true
 

● If this is the first in the list, return false 

hasBackward() = false



hasBackward()
● If there is a page before the current one, return true

 
● If this is the first in the list, return false 



hasBackward()
● If there is a page before the current one, return true

 
● If this is the first in the list, return false 

hasBackward() = true





goForward()



goForward()
● Moves current page forward one step 



Assignment 6

Current Page

Pointers?

● Moves current page forward one step 

goForward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page forward one step 

goForward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page forward one step 
● Returns what this page is

goForward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page forward one step 
● Returns what this page is

goForward()

Return: “bucket of baby sloths”

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page forward one step 
● Returns what this page is

***If it is not possible to go forward, report an error***

goForward()

Return: “bucket of baby sloths”

https://www.youtube.com/watch?v=R0V_D4zaEpU




goBackward()



goBackward()
● Moves current page backward one step 



Assignment 6

Current Page

Pointers?

● Moves current page backward one step 

goBackward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page backward one step 

goBackward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page backward one step 
● Returns what this page is

goBackward()

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page backward one step 
● Returns what this page is

goBackward()

Return: “pointer”

https://www.youtube.com/watch?v=R0V_D4zaEpU


Assignment 6

Current Page

Pointers?

● Moves current page backward one step 
● Returns what this page is

***If it is not possible to go backward, report an error***

goBackward()

Return: “pointer”

https://www.youtube.com/watch?v=R0V_D4zaEpU




Restrictions on the History Class 
Implementation



Restrictions
● You MUST implement this using a doubly-linked list, along the lines of the 

example shown in the assignment handout 



Restrictions
● You MUST implement this using a doubly-linked list, along the lines of the 

example shown in the assignment handout 

● You MUST meet the time bounds set out in the header 
○ Every option EXCEPT for goToNewPage should run in O(1) time 
○ goToNewPage should run in O(n) 

■ n is the number of elements in the history 



Resources to help Understand Doubly 
Linked Lists



Resources for Doubly Linked Lists
● See section handout six (and solutions)

http://web.stanford.edu/class/cs106b/handouts/190%20Section%20Handout%206.pdf
http://web.stanford.edu/class/cs106b/handouts/190S%20Section%20Solutions%206.pdf


Resources for Doubly Linked Lists
● See section handout six (and solutions)

● Before starting, it may be worth it to go through this section problem: 

http://web.stanford.edu/class/cs106b/handouts/190%20Section%20Handout%206.pdf
http://web.stanford.edu/class/cs106b/handouts/190S%20Section%20Solutions%206.pdf






Tips, Cautions, and Notes



Tips/Cautions
● Make sure every new has exactly one delete 
● Need to write std::string in .h files 
● Member functions that return nested types also need the :: but use class 

name to tell compiler where these types come from 
● ONLY use new when you are positive that you want to make a new linked list 

cell. DON’T use new when you just want a pointer to an existing linked list 
cell 

● Similarly, only delete if you are positive that you want to permanently delete 
this cell 



Notes
● You MUST write 3 custom test cases 

● When finished with Browser History: 
○ History buttons (forward and backward) should work. 
○ You won’t see text until you implement line manager
○ But if you type text into the address bar and hit enter you should be able to navigate between 

pages 





Part 2: Autocomplete



Given a prefix, autocomplete returns a list of articles that start with the prefix.



Implemented using a trie



What is a trie?



Tries
● Pronounced [tɹaɪ] (“try”)*
● A trie is a special kind of tree made up of nodes
● Each trie has:

○ a boolean value representing whether the
node represents a word

○ some sort of mapping of characters to TrieNode* pointers
○ Each node represents a sequence of characters

that’s given by its position in the trie.



Tries
● Note: each node doesn’t know what

letter it represents!  The word that a node 
represents depends only on its position in the trie.

○ (The words written inside the nodes aren’t really part
 of the TrieNode; they’re just included in the diagram to make
 what word each node represents more clear.)



What words exist in the trie?

(credit: Nick Troccoli)



a 
as 
ha 
haha 
hash
he 
she

(credit: Nick Troccoli)

What words exist in the trie?



And one more thing...
● Tries are optimized for prefix searches.
● The Lexicon class is built using a trie!
● How would we go about searching for all words 

that begin with ‘te’ in this trie? → 



Autocomplete
● A class to provide autocomplete results, using a trie to store Wikipedia titles

class Autocomplete { 
public: 

Autocomplete(); 
~Autocomplete(); 
void add(const std::string& word); 
Vector suggestionsFor(const std::string& prefix, int maxHits) const; 

private: 
/* … up to you to decide how to store the trie! … */ 

};

struct TrieNode {
bool isWord;
/* store your mappings here! */

}



Autocomplete
● Uses a trie to store the most common article titles from Wikipedia
● Has two functions:

○ void add(const std::string& word);
■ Adds a new title to the trie.

○ Vector<std::string> suggestionsFor(const std::string& prefix, int 
maxHits);

■ Called when the user types some text in the search bar.
■ Returns a list of titles that begin with the prefix.
■ If there are maxHits or fewer suggestions, return all of them.  

If there are > maxHits suggestions, return only maxHits of them.  



Autocomplete — Hints
● You can return autocomplete suggestions in any order you like.
● Do not assume that the char values in the titles will be English letters.

○ NAK (non-acknowledgement), BEL (bell sound!), and TAB are all 
characters!

○ With non-Roman scripts, a char may represent part of a glyph.  
○ Don’t assume anything about what’s in your chars and you’ll be fine. :) 



Autocomplete — Hints
● Is there any programming strategy that might be useful for traversing a trie?  

○ (one whose name starts with R, perhaps?)
● Efficiency:

○ Avoid spending time gathering more strings than you’ll be allowed to 
return.

○ Don’t go down branches of the trie that don’t produce words with the 
given prefix.

● Be sure not to leak any memory! Use the TRACK_ALLOCATIONS_OF macro to 
record how many times your nodes are allocated and deallocated, and make 
sure that everything balances.

● This is a tricky assignment—we recommend you write at least 4 test cases!



Part 3: Line Manager



Lines
● Each Wikipedia page loaded by MiniBrowser is broken down into lines of 

text.



More on Lines
● All lines have the same width
● Not all lines have the same height.
● There can be vertical space between lines.
● Lines cannot overlap each other.



● We don’t always need to render all of the lines…
● Which ones do we really need?  Only the ones visible in our window



More on Lines
Lines are represented by a struct:

class Line { 
public: 

double topY() const; 
double bottomY() const; 

}



More on Lines
Lines are represented by a struct:

class Line { 
public: 

double topY() const; 
double bottomY() const; 

}

» Numerically lower Y-coordinates are higher on the display! «



What is LineManager?
● LineManager is a class that stores lines
● Lines must be stored as a binary search tree

class LineManager { 
public: 

LineManager(const Vector& lines); 
~LineManager(); 
double contentHeight() const; 
Line* lineAt(double y) const; 
Vector linesInRange(double topY, double bottomY) const; 

private: 
/* binary tree stuff!*/ 

};



Binary Search Trees



Binary Search Trees

● Left child must be less than parent

● Right child must be greater than parent



Binary Search Trees — LineManager!

● Left child must be above parent

● Right child must be below parent



Building Your Tree 
● How do we build a binary tree?

○ Structs containing a value and pointers to left and right children
○ If the left pointer is nullptr, there’s no left child; same for the right pointer.
○ Here’s an example of a binary tree node that stores an int:

struct BinaryTreeNode {
int value;
BinaryTreeNode* left;
BinaryTreeNode* right;

}



Building Your Tree — Things to Think About
● You should aim to construct as balanced of a tree as possible here, since, 

operations on a binary search tree get really slow when the tree is 
imbalanced. 

● (Hint: since the lines come in sorted order, what line do you want at the top 
of the tree? Then what strategy do we use to fill out the left and right sides?)

● Don’t compare Line*s—this doesn’t work as expected.  Compare their 
coordinates instead.

● Your LineManager class should store the binary tree as a pointer.  (To what?)
● There are mandatory time bounds — check LineManager.h for more details!



contentHeight()
● Returns the y-coordinate of the bottom of the last line.

class LineManager { 
public: 

LineManager(const Vector& lines); 
~LineManager(); 
double contentHeight() const; 
Line* lineAt(double y) const; 
Vector linesInRange(double topY, double bottomY) const; 

};



contentHeight()
● Returns the y-coordinate of the bottom of the last line.
● Given the last line, what line function do we want here? bottomY()
● How can we traverse the tree to find the bottom line?

class LineManager { 
public: 

LineManager(const Vector& lines); 
~LineManager(); 
double contentHeight() const; 
Line* lineAt(double y) const; 
Vector linesInRange(double topY, double bottomY) const;

};



lineAt()
● Receive a Y-coordinate
● Return the line that contains the coordinate, or nullptr if none exists
● If two lines both have the Y-coordinate on their border, either is OK

class LineManager { 
public: 

LineManager(const Vector& lines); 
~LineManager(); 
double contentHeight() const; 
Line* lineAt(double y) const; 
Vector linesInRange(double topY, double bottomY) const; 

};



linesInRange()
● Receive two Y-coordinates
● Return a Vector of lines that are at least partially between the two 

Y-coordinates

class LineManager { 
public: 

LineManager(const Vector& lines); 
~LineManager(); 
double contentHeight() const; 
Line* lineAt(double y) const; 
Vector linesInRange(double topY, double bottomY) const; 

};



linesInRange(double topY, double bottomY)
● Receive two Y-coordinates
● Return a Vector of lines that are at least partially between the two 

Y-coordinates



linesInRange(double topY, double bottomY)

Ma mignonne, je vous donne

Le bon jour; le séjour

C’est prison.  Guérison

Recouvrez; puis ouvrez...

If we call linesInRange with:

topY = 20

bottomY = 42

0

10

20

30

40

50

linesInRange(13, 42) should include lines #2, 3, and 4.



Assignment Due:
 Friday, March 8th

pair programming is permitted :)



Any questions?


