Assignment 6:
“Minibrowser”

Juliette Woodrow, Ethan Chi

What is MiniBrowser?

e You build your own “mini” browser that loads Wikipedia articles!
e We handle:
o the downloading articles from Wikipedia part
e You handle:
o the browser history
o the autocomplete search function
o rendering lines on the screen!
e Uses linked lists and pointers heavily

MiniBrowser oe

Article: |Sp| -
Pudii pace :
pace Race
The pudds (MapudungSpace Shuttle 40, Spanish
pronunciation: [pu' pace capsule " American deer

pace exploration

from the genus Pudugpace probe st deer. The name
is a loanword from ISpace station the indigenous

Mapuche people of ceopace suit rn Argentina. The
two species of pudd paceflight u mephistophiles)

paceport

from Venezuela, Col i the southern pudu
(Pudu puda; sometimes incorrectly modified to Pudu pudu) from
southern Chile and south-western Argentina. Pudis range in size
from 32 to 44 centimeters (13 to 17 in) tall, and up to 85
centimeters (33 in) long. As of 2009, the southern pudu is
classified as near threatened, while the northern pudu is
classified as vulnerable in the IUCN Red List.

Taxonomy

Th o momism Muaddis crmm £2 mmd mwmmded by FPuwldoabh wodicwa) s a8

1) browser historys=

MiniBrowser he
Article: [sp| | —
Pudd pace :
pace Race
The pudis (MapudunguSpace Shuttle 44, Spanish

pronunciation: [pu' s:g: ::g{g}:tion n American deer

L du st deer. The name
2) autocomplete. g:gg g{gggon the indigenous
Mapuche people of cepace suit rn Argentina. The
two species of pudd p:g:f}:ght u mephistophiles)
from Venezuela, Col sl d the southern pudd
(Pudu puda; sometimes incorrectly modified to Pudu pudu) from
southern Chile and south-western Argentina. Pudis range in size
from 32 to 44 centimeters (13 to 17 in) tall, and up to 85
centimeters (33 in) long. As of 2009, the southern pudu is
classified as near threatened, while the northern pudu is
classified as vulnerable in the IUCN Red List.

3) LineManage

Taxonomy

-l - mwmmrrm Tiswdis s rmm £2 mmde mwmwmmded h:) FPuwldah woadicwal s &

Part 1: Browser History

Overview

Overview

Goal: Implement a history object to keep track of web browser history

Overview

Goal: Implement a history object to keep track of web browser history

Kind of like what Google Chrome has for each user!

Overview

Goal: Implement a history object to keep track of web browser history

Kind of like what Google Chrome has for each user!

Check out my
history from
Monday !

4:30 PM

4:30 PM

4:30 PM

4:29 PM

4:29 PM

4:29 PM

O 0O 0O 00 0 O

4:27 PM

Today - Monday, February 25,2019

B® Signintoyouraccount login.microsoftonline.com

€

L

@

Breaking News, World News & Multimedia - The New York Times ~ www.nytimes.com
CS110: Principles of Computer Systems web.stanford.edu

bucket of baby sloths - YouTube ~www.youtube.com

Pointers - C++ Tutorials www.cplusplus.com

what are pointers c++ - Google Search www.google.com

YEAH Hours MiniBrowser - Google Slides docs.google.com

Overview

Goal: Implement a history object to keep track of web browser history

Overview

Goal: Implement a history object to keep track of web browser history

class History {

public:
History();
~History();

void goToNewPage(const std::string& page);

bool hasForward() const;
bool hasBackward() const;

std::string goForward();
std::string goBackward();

private:
/* ... discussed below; mostly up to you! ... */
}s

Overview

Goal: Implement a history object to keep track of web browser history

class History {
public:

History();
~History();

void goToNewPage(const std::string& page);

bool hasForward() const;
bool hasBackward() const;

std::string goForward();
std::string goBackward();

private:

B

/* ... discussed below; mostly up to you! ...

|

Constructor
~Destructor

5 public
methods

Let’s Look at an Example...

Imagine a 106b student is using our browser

Imagine a 106b student is using our browser

history.goToNewPage(“cs106b assignment 67);

|

Current Page

Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 6”);

history.goToNewPage(“pointer”);

forward

~ A

backward

Current Page

Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 67);
history.goToNewPage(“pointer”);

history.goToNewPage(“bucket of baby sloths”);

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 6”);
history.goToNewPage(“pointer”);
history.goToNewPage(“bucket of baby sloths”);

history.goBack();

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

Imagine a 106b student is using our browser
history.goToNewPage(“cs106b assignment 6”);
history.goToNewPage(“pointer”);
history.goToNewPage(“bucket of baby sloths”);

history.goBack(); x2

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

Imagine a 106b student is using our browser
What will happen if they type:

history.goToNewPage(“keith schwarz”); 777

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

Imagine a 106b student is using our browser

history.goToNewPage(“keith schwarz”);

forward

backward

Current Page

Let’s look at the Public Methods

goToNewPage(const std::string& page)

goToNewPage(const std::string& page)

forward forward

~ A

‘ backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goToNewPage(const std::string& page)

We are going to walk through what happens when the
user attempts:

history.goToNewPage (“keith schwarz”);

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.

|

Current Page

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.
e Append the new page to the end of the history.

|

Current Page

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.
e Append the new page to the end of the history.

forward

~ A

backward

Current Page

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.
e Append the new page to the end of the history.
e Update the current page to be the new page

forward

~ A

backward

Current Page

goToNewPage(const std::string& page)

e |If there are any pages forward of the current page in history clear them out.
e Append the new page to the end of the history.
e Update the current page to be the new page

forward

~ A

backward

Current Page

hasForward()

hasForward()

e If thereis a page after the current one, return true

hasForward()

e If thereis a page after the current one, return true

e |[f thisis the last in the list, return false

hasForward()

e If thereis a page after the current one, return true

e |[f thisis the last in the list, return false

forward

~ A

backward

Current Page

hasForward()

e If thereis a page after the current one, return true

e |[f thisis the last in the list, return false

forward

e B

backward

hasForward() = true
Current Page

hasForward()

e If thereis a page after the current one, return true

e |[f thisis the last in the list, return false

forward

backward

Current Page

hasForward()

e If thereis a page after the current one, return true

e |[f thisis the last in the list, return false

forward

backward

hasForward() = false Current Page

hasBackward()

hasBackward()

e If there is a page before the current one, return true

hasBackward()

e If there is a page before the current one, return true

e |f thisis the first in the list, return false

hasBackward()

e If there is a page before the current one, return true

e |f thisis the first in the list, return false

forward

~ A

backward

Current Page

hasBackward()

e If there is a page before the current one, return true

e |f thisis the first in the list, return false

forward

e B

backward

hasBackward() = false
Current Page

hasBackward()

e If there is a page before the current one, return true

e |f thisis the first in the list, return false

forward

backward

Current Page

hasBackward()

e If there is a page before the current one, return true

e |f thisis the first in the list, return false

forward

backward

hasBackward() = true Eurrent: Page

goForward()

goForward()

e Moves current page forward one step

goForward()

e Moves current page forward one step

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goForward()

e Moves current page forward one step

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goForward()

e Moves current page forward one step
e Returns what this page is

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goForward()

e Moves current page forward one step

e Returns what this page is Return: “bucket of baby sloths?”
forward forward
Wamy W

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goForward()

e Moves current page forward one step
e Returns what this page is Return: “bucket of baby sloths”

¥|f it is not possible to go forward, report an error*

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goBackward()

goBackward()

e Moves current page backward one step

goBackward()

e Moves current page backward one step

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goBackward()

e Moves current page backward one step

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goBackward()

e Moves current page backward one step
e Returns what this page is

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goBackward()

e Moves current page backward one step

e Returns what this page s Return: “pointer?”
forward forward
Wapny B

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

goBackward()

Moves current page backward one step
Returns what this page is Return: “pointer”

%|f it is not possible to go backward, report an error*

forward forward

~ A

backward backward

Current Page

https://www.youtube.com/watch?v=R0V_D4zaEpU

Restrictions on the History Class

Implementation

Restrictions

e You MUST implement this using a doubly-linked list, along the lines of the
example shown in the assignment handout

Restrictions

e You MUST implement this using a doubly-linked list, along the lines of the
example shown in the assignment handout

e You MUST meet the time bounds set out in the header

o Every option EXCEPT for goToNewPage should run in O(1) time
o goToNewPage should runin O(n)
m nisthe number of elements in the history

Resources to help Understand Doubly

Linked Lists

Resources for Doubly Linked Lists

e See section handout six (and solutions)

http://web.stanford.edu/class/cs106b/handouts/190%20Section%20Handout%206.pdf
http://web.stanford.edu/class/cs106b/handouts/190S%20Section%20Solutions%206.pdf

Resources for Doubly Linked Lists

e See section handout six (and solutions)

e Before starting, it may be worth it to go through this section problem:

http://web.stanford.edu/class/cs106b/handouts/190%20Section%20Handout%206.pdf
http://web.stanford.edu/class/cs106b/handouts/190S%20Section%20Solutions%206.pdf

Problem Seven: Doubly-Linked Lists

The linked lists we talked about in lecture are called singly-linked lists because each cell just stores a
single link pointer, namely, one to the next element in the list. A common variant on linked lists is the
doubly-linked list, where each cell stores two pointers — a pointer to the next element in the list (as be-
fore) and a pointer to the previous element in the list.

Let’s begin by modifying some of the existing code from lecture to account for this case. Assuming you
have a Cell type representing a cell in a doubly-linked list, write a function

Cell* readList();

that reads a list of values from the user, then returns a new doubly-linked list containing those values in
the order they were entered.

Doubly-linked lists have one really nice property: it is really easy to splice a new element into or out of a
doubly-linked list. Write a function

void insertBefore(Cell*& head, Cell* beforeMe, Cell* newCell);

that takes as input a pointer to the first element in a doubly-linked list, a pointer to a cell somewhere in
the linked list (beforeMe), and a newly-allocated Cell object, then splices the new cell into the doubly-
linked list right before the cell beforeMe. Your function should update head so that when the function
returns, it still points at the first cell in the linked list. (Why is it necessary to pass in the head of the
list?) You can assume that beforeMe is not null.

Tips, Cautions, and Notes

Tips/Cautions

e Make sure every new has exactly one delete

e Need to write std::string in .h files

e Member functions that return nested types also need the :: but use class
name to tell compiler where these types come from

e ONLY use new when you are positive that you want to make a new linked list
cell. DON'T use new when you just want a pointer to an existing linked list
cell

e Similarly, only delete if you are positive that you want to permanently delete
this cell

Notes

e You MUST write 3 custom test cases

e \When finished with Browser History:
o History buttons (forward and backward) should work.
o You won't see text until you implement line manager
o Butif you type text into the address bar and hit enter you should be able to navigate between

pages

Part 2: Autocomplete

Pr] Q
Pr

Proxy server

President of the United States
Prince Philip, Duke of Edinburgh
Premier League

Prince (musician)

Prince Harry, Duke of Sussex
Production of the James Bond films
Prince William, Duke of Cambridge
Prague

Given a prefix, autocomplete returns a list of articles that start with the prefix.

Implemented using a trie

What is a trie?

Tries

e Pronounced [tia1] (“try”)*
e A trieis a special kind of tree made up of nodes

e FEach trie has:

(@)

a boolean value representing whether the

node represents a word

some sort of mapping of characters to TrieNodex pointers
Each node represents a sequence of characters

that's given by its position in the trie.

/\

\
/?\

Tries

e Note: each node doesn’'t know what
letter it represents! The word that a node

represents depends only on its position in the trie.
o (The words written inside the nodes aren’t really part
of the TrieNode; they're just included in the diagram to make
what word each node represents more clear.)

What words exist in the trie?

A E H S
ALETHES A EH S A E H' S
(071, Ry TAFAEA ¥
AETHES A EH S ALETHES
A H S
A E H S £ H S A EHS
(/1717 ARV AVANAY
A EH S A EH S
VARSI TAFAFIW:

(credit: Nick Troccoli)

Yellow = word in the trie

What words exist in the trie?
Yellow = word in the trie

| I

A EH S
(/1,1
v = v
AEHS A EHS A EHS
L T /17 UL dS
/ — 3 f Na
A EH S A EH S A B HES AEHS
AP, [TT] AVANAY, T./T7 nNaha
{ l %
nash
arriri R iR AVANAN,
/ 1
ne
l she
A EH S A EH S
AVANAY, AVANAY,

(credit: Nick Troccoli)

And one more thing...

e [ries are optimized for prefix searches.

e The Lexicon class is built using a trie!

e How would we go about searching for all words / \
that begin with ‘te’ in this trie? —

2o @

Autocomplete

e A class to provide autocomplete results, using a trie to store Wikipedia titles

class Autocomplete {
public:
Autocomplete();
~Autocomplete();
void add(const std::string& word);
Vector suggestionsFor(const std::string& prefix, int maxHits) const;
private:
/* .. up to you to decide how to store the trie! .. */

}

struct TrieNode {
bool isWord;
/* store your mappings here! */

Autocomplete

e Uses a trie to store the most common article titles from Wikipedia
e Has two functions:

o void add(const ::string& word);
m Adds a new title to the trie.

o Vector< ::string> suggestionsFor(const ::string& prefix, int
maxHits);

m Called when the user types some text in the search bar.
m Returns a list of titles that begin with the prefix.
m [f there are maxHits or fewer suggestions, return all of them.
If there are > maxHits suggestions, return only maxHits of them.

Autocomplete — Hints

e You can return autocomplete suggestions in any order you like.
e Do not assume that the char values in the titles will be English letters.
o NAK (non-acknowledgement), BEL (bell sound!), and TAB are all
characters!

o With non-Roman scripts, a char may represent part of a glyph.
o Don't assume anything about what’s in your chars and you’ll be fine. :)

Autocomplete — Hints

|s there any programming strategy that might be useful for traversing a trie?

o (one whose name starts with R, perhaps?)
Efficiency:
o Avoid spending time gathering more strings than you'll be allowed to
return.
o Don’'t go down branches of the trie that don’t produce words with the
given prefix.
Be sure not to leak any memory! Use the TRACK_ALLOCATIONS_OF macro to
record how many times your nodes are allocated and deallocated, and make
sure that everything balances.
This is a tricky assignment—we recommend you write at least 4 test cases!

Part 3: Line Manager

Lines

e FEach Wikipedia page loaded by MiniBrowser is broken down into lines of

text.
US Constitution US Constitution
We the People of the United We the People of the United
States, in Order to form a more States, in Order to form a more
perfect Union, establish Justice, ‘ rfect Union, establish Justice
insure domestic Tranquility, insure aonest{c Tranquility,
provide for the common defence, provide for the common defence,
promote the general Welfare, and promote the general Welfare, and
secure the Blessings of Liberty to |_secure the Blessings of Liberty to
ourselves and our Posterity, do ourselves and our Posterity, do
ordain and establish this | _ordain and g;%ghljﬁh thi
Constitution for the United States Constitution for the United States
of America. of America.

More on Lines

All lines have the same width
Not all lines have the same height.

There can be vertical space between lines.
Lines cannot overlap each other.

US Constitution

We the People of the United
States, in Order to form a more
perfect Union, establish Justice,
insure domestic Tranquility,
provide for the common defence,
promote the general Welfare, and
secure the Blessings of Liberty to
ourselves and our Posterity, do
ordain and establish this
Constitution for the United States
of America.

[US Constitution

We the People of the United

States, in Order to form a more

per fect Union, establish Justice,

insure domestic Tranquility,

provide for the common defence,

promote the general Welfare, and

secure the Blessings of Liberty to

ourselves and our Posterity, do

ordain and ggigbLiEh this
Constitution for the United States

of America.

| us constitution | US Constitution US Constitution
We the People of the United Peopl f t
States, in Order to form a more
%grfect Un{on{ establish Justice,
nsure stic Tranquility,
provide for the common defence,
romote the general Welfare, and promote ene Welfare
secure the Blessings of Liberty to secure the Blessings of Liberty to
szygggngg and QEE Pﬁﬂﬁ(uv. do —W
ordain and establish this ordain_and establish this
—Constitutton—for—the—tntted—States—

- = Constitution for the United States
of America. of America.
Article. I. [Article. I. | Article. I.
Section. 1. | section. 1. | Section. 1.

All legislative Powers herein
granted sha vested in a

Congress of the United States,

and House of Representatives.

Section. 2. [Ssection. 2. |

The House of Representatives shall
be composed of Members chosen

every second Year by the People of
the several States, and the
Electors in each State shall have
the Qualifications requisite for

Electors of the most numerous
Branch of the State Legislature.

e \We don't always need to render all of the lines...
e Which ones do we really need? Only the ones visible in our window

More on Lines

Lines are represented by a struct:

class Line {
public:
double topY() const;
double bottomY() const;

More on Lines

Lines are represented by a struct:

class Line {
public:

double topY() const; - n
double bottomY() const; —— Arnde- I-

» Numerically lower Y-coordinates are higher on the display! «

What is LineManager?

e LineManager is a class that stores lines
e Lines must be stored as a binary search tree

class LineManager {
public:
LineManager(const Vector& lines);
~LineManager();
double contentHeight() const;
Linex lineAt(double y) const;
Vector linesInRange(double topY, double bottomY) const;
private:
/* binary tree stuff!x/

+s

Binary Search Trees

Binary Search Trees

e [|eft child must be less than parent

e Right child must be greater than parent

Binary Search Trees — LineManager!

e Left child must be above parent

e Right child must be below parent

Building Your Tree

e How do we build a binary tree?

o Structs containing a value and pointers to left and right children
o Ifthe left pointer is nullptr, there's no left child; same for the right pointer.
o Here’s an example of a binary tree node that stores an int:

struct BinaryTreeNode {
int value;
BinaryTreeNodex left;
BinaryTreeNode* right;

Building Your Tree — Things to Think About

You should aim to construct as balanced of a tree as possible here, since,
operations on a binary search tree get really slow when the tree is
imbalanced.

(Hint: since the lines come in sorted order, what line do you want at the top
of the tree? Then what strategy do we use to fill out the left and right sides?)
Don’t compare Linexs—this doesn’t work as expected. Compare their
coordinates instead.

Your LineManager class should store the binary tree as a pointer. (To what?)
There are mandatory time bounds — check LineManager.h for more details!

contentHeight()

e Returns the y-coordinate of the bottom of the last line.

class LineManager {
public:
LineManager(const Vector& lines);
~LineManager();
double contentHeight() const;
Linex lineAt(double y) const;
Vector linesInRange(double topY, double bottomY) const;

+s

contentHeight()

e Returns the y-coordinate of the bottom of the last line.
e Given the last line, what 1ine function do we want here? bottomY(()

e How can we traverse the tree to find the bottom line?

class LineManager {
public:
LineManager(const Vector& lines);
~LineManager();
double contentHeight() const;
Linex lineAt(double y) const;
Vector linesInRange(double topY, double bottomY) const;

+s

lineAt()

e Receive a Y-coordinate
e Return the line that contains the coordinate, or nullptr if none exists

e |f two lines both have the Y-coordinate on their border, either is OK

class LineManager {
public:
LineManager(const Vector& lines);
~LineManager();
double contentHeight() const;
Linex lineAt(double y) const;
Vector linesInRange(double topY, double bottomY) const;

+s

linesinRange()

e Receive two Y-coordinates
e Return a Vector of lines that are at least partially between the two

Y-coordinates

class LineManager {
public:
LineManager(const Vector& lines);
~LineManager();
double contentHeight() const;
Line* lineAt(double y) const;

Vector_linesInRange(double topY, double bottomY) const;

+s

linesInRange(double topY, double bottomY)

e Receive two Y-coordinates
e Return a Vector of lines that are at least partially between the two
Y-coordinates

linesInRange(double topY, double bottomY)

O1Ma mignonne, je vous donne If we call 1inesInRange with:
10

Le bon jour; le séjour
20] . =L topY = 20
30 | C’est prison. Guérison
40

Recouvrez; puis ouvrez... - bottomY = 42
50

linesInRange(13, 42) should include lines #2, 3, and 4.

Assignment Due;
Friday, March 8th

pair programming is permitted :)

Any questions?

