CS 106B, Lecture 10 Recursion and Fractals

Plan for Today

- Introduction to fractals, a powerful tool used in graphics

Fractals

- fractal: A self-similar mathematical set that can often be drawn as a recurring graphical pattern.
- Smaller instances of the same shape or pattern occur within the pattern itself.
- When displayed on a computer screen, it can be possible to infinitely zoom in/out of a fractal.

Fractals in nature

- Many natural phenomena generate fractal patterns:
- earthquake fault lines
- animal color patterns
- clouds
- mountain ranges
- snowflakes
- crystals
- DNA
- shells
- ...

Example fractals

- Sierpinski triangle: equilateral triangle contains smaller triangles inside it (your next homework)

- Koch snowflake: a triangle with smaller triangles poking out of its sides

- Mandelbrot set: circle with smaller circles on its edge

Coding a fractal

- Many fractals are implemented as a function that accepts x / y coordinates, size, and a level parameter.
- The level is the number of recurrences of the pattern to draw.
- The position and size change in the recursive call; level decreases by 1
- Example, Koch snowflake: snowflake(window, x, y, size, 1);

snowflake(window, x, y, size, 2);
snowflake(window, x, y, size, 3);
- Where should the following lines be inserted in order to get the figure at right?


```
gw.setFillColor("gray");
gw.fillRect(x, y, size, size);
void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
    if (order >= 1) {
        // A
        boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
        // B
        boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
        // C
            boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
            // D
            boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
            // E
        }
}
```


Stanford graphics lib

\#include "gwindow.h"

gw.drawLine(x1, y1, x2, y2);	draws a line between the given two points
gw.drawPolarLine(x, y, r, t);	draws line from (x, y) at angle t of length r; returns the line's end point as a GPoint
gw.getPixel(x, y)	returns an RGB int for a single pixel
gw.setColor("color");	sets color with a color name string like "red", or \#RRGGBB string like "\#ff00cc", or RGB int
gw.setPixel(x, y, rgb);	sets a single RGB pixel on the window
gw.drawOval(x, y, w, h); gw.fillRect(x, y, w, h); ...	other shape and line drawing functions (see online docs for complete member list)

GWindow gw(300, 200);
gw.setTitle("CS 106X Fractals");
gw.drawLine(20, 20, 100, 100);

Cantor Set

- The Cantor Set is a simple fractal that begins with a line segment.
- At each level, the middle third of the segment is removed.
- In the next level, the middle third of each third is removed.

- Write a function cantorSet that draws a Cantor Set with a given number of levels (lines) at a given position/size.
- Place CANTOR_SPACING of vertical space between levels.
- How is this fractal self-similar?
- What is the minimum amount of work to do at each level?
- What's a good stopping point (base case)?

Cantor Set solution

```
void cantorSet(GWindow& window, int x, int y,
            int width, int levels) {
    if (levels > 0) {
        // recursive case: draw line, then repeat by thirds
        window.drawLine(x, y, x + width, y);
        cantorSet(window, x, y + 20, width/3, levels-1);
        cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
    }
    // else, base case: 0 levels, do nothing
}
```


Cantor Set animated

Q: Which way does the drawing animate? (How could we change it?) void cantorSet(GWindow\& window, int x, int y, int width, int levels) \{ if (levels > 0) \{
// recursive case: draw line, then repeat by thirds pause(250);
window.drawLine(x, y, x + width, y);
cantorSet(window, $x, y+20$, width/3, levels-1);
cantorSet(window, $x+2 *$ width/3, $y+20$, width/3, levels -1);
\} ${ }^{3}$ A.

B.

C.

D.

Announcements

- Homework 2 due today at 5PM
- Homework 1 grades will be released by your section leader soon!
- Tyler does not have OH today (or tomorrow, since there is no class)

Koch snowflake

- Koch snowflake: A fractal formed by pulling a triangular "bend" out of each side of an existing triangle at each level.

- Start with an equilateral triangle, then:
- Divide each of its 3 line segments into 3 parts of equal length.
- Draw an eq.triangle with middle segment as base, pointing outward.
- Remove the middle line segment.

Line segment replace

- Replace each line segment as follows:

Multiple levels

- How is this fractal self-similar?

Polar lines

$$
\begin{array}{lrrrr}
\text { // } & y & r & \text { theta } \\
\text { window.drawPolarLine }(20, & 20, & 113, & -45) \text {; }
\end{array}
$$

Triangle in polar

- Segment 1:

Segment 2:
Segment 3:

Segment in polar

- Think of a triangle side as 4 polar line segments, as below.
- What are their angles, relative to the angle of this triangle side?

Snowflake solution

```
GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {
    if (levels == 1) {
        return gw.drawPolarLine(pt, size, t);
    } else {
        pt = ksLine(gw, pt, size/3, t, levels - 1);
        pt = ksLine(gw, pt, size/3, t + 60, levels - 1);
        pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
        return ksLine(gw, pt, size/3, t, levels - 1);
    }
}
```

void kochSnowflake(GWindow\& gw, int x, int y, int size, int levels) \{ GPoint pt(x, y);
pt = ksLine(gw, pt, size, 0, levels);
pt = ksLine(gw, pt, size, -120, levels);
pt = ksLine(gw, pt, size, 120, levels);
\}

Fibonacci exercise

- Write a recursive function fib that accepts an integer N and returns the Nth Fibonacci number.
- The first two Fibonacci numbers are defined to be 1.
- Every other Fibonacci number is the sum of the two before it.

$$
\begin{aligned}
& \mathrm{fib}(1)=1 \\
& \mathrm{fib}(2) \Rightarrow 1 \\
& \mathrm{fib}(3) \Rightarrow 2 \\
& \mathrm{fib}(4) \Rightarrow 3 \\
& \mathrm{fib}(5) \Rightarrow 5 \\
& \mathrm{fib}(6) \Rightarrow 8 \\
& \mathrm{fib}(7) \Rightarrow 13 \\
& \mathrm{fib}(8) \Rightarrow 21 \\
& \mathrm{fib}(9) \Rightarrow 34
\end{aligned}
$$

Bad fib solution

```
// Returns the nth Fibonacci number.
int fib(int n) \{
    if ( \(n<=2\) ) \{
        return 1;
    \} else \{
        return \(f i b(n-1)+f i b(n-2) ;\)
    \}
\}
```

// what does the call stack look like?

Bad fib solution

FIGURE 7-2 Steps in the calculation of $f i b(5)$

Memoization

- memoization: Caching results of previous expensive function calls for speed so that they do not need to be re-computed.
- Often implemented by storing call results in a collection.
- Pseudocode template:

$$
\text { cache }=\{ \} . \quad / / \text { empty }
$$

function $f($ args $):$
if I have computed f(args) before: Look up f(args) result in cache.
else:
Actually compute f(args) result. Store result in cache.
Return result.

Wrapper Functions

- We don't want the user to have to worry about the cache!
- Alternative to the default parameters we saw yesterday
- Some recursive functions need extra arguments to implement the recursion
- A wrapper function is a function that does some initial prep work, then fires off a recursive call with the right arguments.
- The recursion is done in the helper function

Memoized fib solution

```
// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function
    Map<int, int> cache;
    return fibHelper(n, cache);
}
int fibHelper(int n, Map<int, int> &cache) {
    if (n <= 2) {
        return 1;
    } else if (cache.containsKey(n)) {
        return cache[n];
    } else {
        int result = fibHelper(n - 1) + fibHelper(n - 2);
        cache[n] = result;
        return result;
    }
}
```

