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Plan for Today
• Introduction to fractals, a powerful tool used in graphics
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Fractals
• fractal: A self-similar mathematical set that can

often be drawn as a recurring graphical pattern.
– Smaller instances of the same shape or pattern

occur within the pattern itself.
– When displayed on a computer screen, it can be

possible to infinitely zoom in/out of a fractal.
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Fractals in nature
• Many natural phenomena generate fractal patterns:

– earthquake fault lines
– animal color patterns
– clouds
– mountain ranges
– snowflakes
– crystals
– DNA
– shells
– ...
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Example fractals
• Sierpinski triangle: equilateral triangle

contains smaller triangles inside it   
(your next homework)

• Koch snowflake: a triangle with smaller
triangles poking out of its sides

• Mandelbrot set: circle with
smaller circles on its edge
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Coding a fractal
• Many fractals are implemented as a function that accepts x/y 

coordinates, size, and a level parameter.
– The level is the number of recurrences of the pattern to draw.
– The position and size change in the recursive call; level decreases by 1

• Example, Koch snowflake:
snowflake(window, x, y, size, 1);

snowflake(window, x, y, size, 2);

snowflake(window, x, y, size, 3);
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Boxy fractal
• Where should the following lines be inserted

in order to get the figure at right?
gw.setFillColor("gray");
gw.fillRect(x, y, size, size);

void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
if (order >= 1) {
// A
boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
// B
boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
// C
boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
// D
boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
// E
}

}

x+

y+

(0, 0)
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Stanford graphics lib
#include "gwindow.h"

GWindow gw(300, 200);
gw.setTitle("CS 106X Fractals");
gw.drawLine(20, 20, 100, 100);

gw.drawLine(x1, y1, x2, y2); draws a line between the given two points
gw.drawPolarLine(x, y, r, t); draws line from (x,y) at angle t of length r;

returns the line's end point as a GPoint
gw.getPixel(x, y) returns an RGB int for a single pixel
gw.setColor("color"); sets color with a color name string like "red", or 

#RRGGBB string like "#ff00cc", or RGB int
gw.setPixel(x, y, rgb); sets a single RGB pixel on the window
gw.drawOval(x, y, w, h);
gw.fillRect(x, y, w, h); ...

other shape and line drawing functions
(see online docs for complete member list)

x+

y+

(0, 0)



9

Cantor Set
• The Cantor Set is a simple fractal that begins with a line segment.

– At each level, the middle third of the segment is removed.
– In the next level, the middle third of each third is removed.

• Write a function cantorSet that draws a Cantor Set with a given 
number of levels (lines) at a given position/size.
– Place CANTOR_SPACING of vertical space between levels.

• How is this fractal self-similar? 
• What is the minimum amount of work to do at each level?
• What's a good stopping point (base case)?
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Cantor Set solution
void cantorSet(GWindow& window, int x, int y,

int width, int levels) {
if (levels > 0) {

// recursive case: draw line, then repeat by thirds
window.drawLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);

}
// else, base case: 0 levels, do nothing

}
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Cantor Set animated
Q: Which way does the drawing animate?  (How could we change it?)

void cantorSet(GWindow& window, int x, int y,
int width, int levels) {

if (levels > 0) {
// recursive case: draw line, then repeat by thirds
pause(250);
window.drawLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);

}
}  //   A.               B.               C.               D.
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Announcements
• Homework 2 due today at 5PM
• Homework 1 grades will be released by your section leader soon!
• Tyler does not have OH today (or tomorrow, since there is no class)
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Koch snowflake
• Koch snowflake: A fractal formed by pulling a triangular "bend" out 

of each side of an existing triangle at each level.

• Start with an equilateral triangle, then:
– Divide each of its 3 line segments into 3 parts of equal length.
– Draw an eq.triangle with middle segment as base, pointing outward.
– Remove the middle line segment.
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Line segment replace
• Replace each line segment as follows:



15

Multiple levels
• How is this fractal self-similar?
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Polar lines
//                    x   y    r  theta
window.drawPolarLine(20, 20, 113, -45);

-45 degrees

113 
pixels
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Triangle in polar
• Segment 1: Segment 2: Segment 3:
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Segment in polar
• Think of a triangle side as 4 polar line segments, as below.

– What are their angles, relative to the angle of this triangle side?

1

2 3

4
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Snowflake solution
GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {

if (levels == 1) {
return gw.drawPolarLine(pt, size, t);

} else {
pt = ksLine(gw, pt, size/3, t, levels - 1);
pt = ksLine(gw, pt, size/3, t + 60, levels - 1);
pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
return ksLine(gw, pt, size/3, t, levels - 1);

}
}

void kochSnowflake(GWindow& gw, int x, int y, int size, int levels) {
GPoint pt(x, y);
pt = ksLine(gw, pt, size,    0, levels);
pt = ksLine(gw, pt, size, -120, levels);
pt = ksLine(gw, pt, size,  120, levels);

}
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Fibonacci exercise
• Write a recursive function fib that accepts an integer N and 

returns the Nth Fibonacci number.
– The first two Fibonacci numbers are defined to be 1.
– Every other Fibonacci number is the sum of the two before it.

fib(1) => 1
fib(2) => 1
fib(3) => 2
fib(4) => 3
fib(5) => 5
fib(6) => 8
fib(7) => 13
fib(8) => 21
fib(9) => 34
...

crawl
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Bad fib solution
// Returns the nth Fibonacci number.
int fib(int n) {

if (n <= 2) {
return 1;

} else {
return fib(n - 1) + fib(n - 2);

}
}

// what does the call stack look like?
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Bad fib solution
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Memoization
• memoization: Caching results of previous expensive function calls 

for speed so that they do not need to be re-computed.
– Often implemented by storing call results in a collection.

• Pseudocode template:
cache = {}.       // empty

function f(args):
if I have computed f(args) before:

Look up f(args) result in cache.
else:

Actually compute f(args) result.
Store result in cache.

Return result.
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Wrapper Functions
• We don't want the user to have to worry about the cache!

– Alternative to the default parameters we saw yesterday
• Some recursive functions need extra arguments to implement the 

recursion
• A wrapper function is a function that does some initial prep work, 

then fires off a recursive call with the right arguments. 
• The recursion is done in the helper function
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Memoized fib solution
// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function

Map<int, int> cache;
return fibHelper(n, cache);

}

int fibHelper(int n, Map<int, int> &cache) {
if (n <= 2) {

return 1;
} else if (cache.containsKey(n)) {

return cache[n];
} else {

int result = fibHelper(n - 1) + fibHelper(n - 2);
cache[n] = result;
return result;

}
}


