
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 10
Recursion and Fractals

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• Introduction to fractals, a powerful tool used in graphics

3

Fractals
• fractal: A self-similar mathematical set that can

often be drawn as a recurring graphical pattern.
– Smaller instances of the same shape or pattern

occur within the pattern itself.
– When displayed on a computer screen, it can be

possible to infinitely zoom in/out of a fractal.

4

Fractals in nature
• Many natural phenomena generate fractal patterns:

– earthquake fault lines
– animal color patterns
– clouds
– mountain ranges
– snowflakes
– crystals
– DNA
– shells
– ...

5

Example fractals
• Sierpinski triangle: equilateral triangle

contains smaller triangles inside it
(your next homework)

• Koch snowflake: a triangle with smaller
triangles poking out of its sides

• Mandelbrot set: circle with
smaller circles on its edge

6

Coding a fractal
• Many fractals are implemented as a function that accepts x/y

coordinates, size, and a level parameter.
– The level is the number of recurrences of the pattern to draw.
– The position and size change in the recursive call; level decreases by 1

• Example, Koch snowflake:
snowflake(window, x, y, size, 1);

snowflake(window, x, y, size, 2);

snowflake(window, x, y, size, 3);

7

Boxy fractal
• Where should the following lines be inserted

in order to get the figure at right?
gw.setFillColor("gray");
gw.fillRect(x, y, size, size);

void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
if (order >= 1) {
// A
boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
// B
boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
// C
boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
// D
boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
// E
}

}

x+

y+

(0, 0)

8

Stanford graphics lib
#include "gwindow.h"

GWindow gw(300, 200);
gw.setTitle("CS 106X Fractals");
gw.drawLine(20, 20, 100, 100);

gw.drawLine(x1, y1, x2, y2); draws a line between the given two points
gw.drawPolarLine(x, y, r, t); draws line from (x,y) at angle t of length r;

returns the line's end point as a GPoint
gw.getPixel(x, y) returns an RGB int for a single pixel
gw.setColor("color"); sets color with a color name string like "red", or

#RRGGBB string like "#ff00cc", or RGB int
gw.setPixel(x, y, rgb); sets a single RGB pixel on the window
gw.drawOval(x, y, w, h);
gw.fillRect(x, y, w, h); ...

other shape and line drawing functions
(see online docs for complete member list)

x+

y+

(0, 0)

9

Cantor Set
• The Cantor Set is a simple fractal that begins with a line segment.

– At each level, the middle third of the segment is removed.
– In the next level, the middle third of each third is removed.

• Write a function cantorSet that draws a Cantor Set with a given
number of levels (lines) at a given position/size.
– Place CANTOR_SPACING of vertical space between levels.

• How is this fractal self-similar?
• What is the minimum amount of work to do at each level?
• What's a good stopping point (base case)?

10

Cantor Set solution
void cantorSet(GWindow& window, int x, int y,

int width, int levels) {
if (levels > 0) {

// recursive case: draw line, then repeat by thirds
window.drawLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);

}
// else, base case: 0 levels, do nothing

}

11

Cantor Set animated
Q: Which way does the drawing animate? (How could we change it?)

void cantorSet(GWindow& window, int x, int y,
int width, int levels) {

if (levels > 0) {
// recursive case: draw line, then repeat by thirds
pause(250);
window.drawLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);

}
} // A. B. C. D.

12

Announcements
• Homework 2 due today at 5PM
• Homework 1 grades will be released by your section leader soon!
• Tyler does not have OH today (or tomorrow, since there is no class)

13

Koch snowflake
• Koch snowflake: A fractal formed by pulling a triangular "bend" out

of each side of an existing triangle at each level.

• Start with an equilateral triangle, then:
– Divide each of its 3 line segments into 3 parts of equal length.
– Draw an eq.triangle with middle segment as base, pointing outward.
– Remove the middle line segment.

14

Line segment replace
• Replace each line segment as follows:

15

Multiple levels
• How is this fractal self-similar?

16

Polar lines
// x y r theta
window.drawPolarLine(20, 20, 113, -45);

-45 degrees

113
pixels

17

Triangle in polar
• Segment 1: Segment 2: Segment 3:

18

Segment in polar
• Think of a triangle side as 4 polar line segments, as below.

– What are their angles, relative to the angle of this triangle side?

1

2 3

4

19

Snowflake solution
GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {

if (levels == 1) {
return gw.drawPolarLine(pt, size, t);

} else {
pt = ksLine(gw, pt, size/3, t, levels - 1);
pt = ksLine(gw, pt, size/3, t + 60, levels - 1);
pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
return ksLine(gw, pt, size/3, t, levels - 1);

}
}

void kochSnowflake(GWindow& gw, int x, int y, int size, int levels) {
GPoint pt(x, y);
pt = ksLine(gw, pt, size, 0, levels);
pt = ksLine(gw, pt, size, -120, levels);
pt = ksLine(gw, pt, size, 120, levels);

}

20

Fibonacci exercise
• Write a recursive function fib that accepts an integer N and

returns the Nth Fibonacci number.
– The first two Fibonacci numbers are defined to be 1.
– Every other Fibonacci number is the sum of the two before it.

fib(1) => 1
fib(2) => 1
fib(3) => 2
fib(4) => 3
fib(5) => 5
fib(6) => 8
fib(7) => 13
fib(8) => 21
fib(9) => 34
...

crawl

21

Bad fib solution
// Returns the nth Fibonacci number.
int fib(int n) {

if (n <= 2) {
return 1;

} else {
return fib(n - 1) + fib(n - 2);

}
}

// what does the call stack look like?

22

Bad fib solution

23

Memoization
• memoization: Caching results of previous expensive function calls

for speed so that they do not need to be re-computed.
– Often implemented by storing call results in a collection.

• Pseudocode template:
cache = {}. // empty

function f(args):
if I have computed f(args) before:

Look up f(args) result in cache.
else:

Actually compute f(args) result.
Store result in cache.

Return result.

24

Wrapper Functions
• We don't want the user to have to worry about the cache!

– Alternative to the default parameters we saw yesterday
• Some recursive functions need extra arguments to implement the

recursion
• A wrapper function is a function that does some initial prep work,

then fires off a recursive call with the right arguments.
• The recursion is done in the helper function

25

Memoized fib solution
// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function

Map<int, int> cache;
return fibHelper(n, cache);

}

int fibHelper(int n, Map<int, int> &cache) {
if (n <= 2) {

return 1;
} else if (cache.containsKey(n)) {

return cache[n];
} else {

int result = fibHelper(n - 1) + fibHelper(n - 2);
cache[n] = result;
return result;

}
}

