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Plan for Today
• New recursive problem-solving techniques

– Exhaustive Search
– Backtracking
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Exhaustive search
• exhaustive search: Exploring every possible combination from a set 

of choices.
– often implemented recursively
– Sometimes called recursive enumeration
Applications:
– producing all permutations of a set of values
– enumerating all possible names, passwords, etc.

• Often the search space consists of many decisions, each of which 
has several available choices.
– Example: When enumerating all 5-letter strings, each of the 5 letters is 

a decision, and each of those decisions has 26 possible choices.
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Exhaustive search
A general pseudo-code algorithm for exhaustive search:

Explore(decisions):
– if there are no more decisions to make:  Stop.

– else, let's handle one decision ourselves, and the rest by recursion.
for each available choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C.
• Un-choose C by returning parameters to original state (if necessary).
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Exercise: printAllBinary
• Write a recursive function printAllBinary that accepts an 

integer number of digits and prints all binary numbers that have 
exactly that many digits, in ascending order, one per line.

– printAllBinary(2); printAllBinary(3);
00 000
01 001
10 010
11 011

100
101
110
111
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printAllBinary solution
void printAllBinary(int numDigits) {

printAllBinaryHelper(numDigits, "");
}

void printAllBinaryHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}
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A tree of calls
• printAllBinary(2);

– This kind of diagram is called a call tree or decision tree.
– Think of each call as a choice or decision made by the algorithm:

• Should I choose 0 or 1 as the next digit?

digits soFar

2 ""

1 "0"

0 "00" 0 "01"

1 "1"

0 "10" 0 "11"

0 1

0 1 0 1
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The base case
void printAllBinaryHelper(int digits, string soFar) {

if (digits == 0) {
cout << soFar << endl;

} else {
printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

– The base case is where the code stops after doing its work.
• pAB(3) -> pAB(2) -> pAB(1) -> pAB(0)

– Each call should keep track of the work it has done.

– Base case should print the result of the work done by prior calls.
• Work is kept track of in some variable(s)  - in this case,   string soFar.
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Exercise: printDecimal
• Write a recursive function printDecimal that accepts an integer 

number of digits and prints all base-10 numbers that have exactly 
that many digits, in ascending order, one per line.

– printDecimal(2); printDecimal(3);
00 000
01 001
02 002
.. ...
98   997
99   998

999



11

printDecimal solution
void printDecimal(int digits) {

printDecimalHelper(digits, "");
}

void printDecimalHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

for (int i = 0; i < 10; i++) {
printDecimalHelper(digits - 1, soFar + 

integerToString(i));
}

}
}
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Announcements
• Homework 3 due on Wednesday at 5PM

• Midterm next Wednesday, 7/24 7-9PM
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Plan for Today
• New recursive problem-solving techniques

– Exhaustive Search
– Backtracking
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Backtracking
• Backtracking: Finding solution(s) by trying all possible paths and 

then abandoning them if they are not suitable.

– a "brute force" algorithmic technique
– often implemented recursively
– Could involve looking for one solution

• If any of the paths found a solution, a solution exists! If none find a 
solution, no solution exists

– Could involve finding all solutions
– Idea: it's exhaustive search with conditions

Applications:
– games: anagrams, crosswords, word jumbles, 8 queens, sudoku
– combinatorics and logic programming
– escaping from a maze
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Backtracking: One Solution
A general pseudo-code algorithm for backtracking problems 

searching for one solution
Backtrack(decisions):

– if there are no more decisions to make:
• if our current solution is valid, return true
• else, return false

– else, let's handle one decision ourselves, and the rest by recursion.
for each available valid choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C. If any of them find a 

solution, return true
• Un-choose C by returning parameters to original state (if necessary).

– If no solutions were found, return false



16

Backtracking: All Solutions
A general pseudo-code algorithm for backtracking problems 

searching for all solutions
Backtrack(decisions):

– if there are no more decisions to make:
• if our current solution is valid, add it to our list of found solutions
• else, do nothing or return

– else, let's handle one decision ourselves, and the rest by recursion.
for each available valid choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C. Keep track of which 

solutions the recursive calls find.
• Un-choose C by returning parameters to original state (if necessary). 

– Return the list of solutions found by all the helper recursive calls.
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Exercise: Dice roll sum
• Write a function diceSum that accepts two integer parameters: a 

number of dice to roll, and a desired sum of all die values.  Output 
all combinations of die values that add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);
{1, 1, 5}
{1, 2, 4}
{1, 3, 3}
{1, 4, 2}
{1, 5, 1}
{2, 1, 4}
{2, 2, 3}
{2, 3, 2}
{2, 4, 1}
{3, 1, 3}
{3, 2, 2}
{3, 3, 1}
{4, 1, 2}
{4, 2, 1}
{5, 1, 1}

{1, 6}
{2, 5}
{3, 4}
{4, 3}
{5, 2}
{6, 1}
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Easier: Dice rolls
• Suggestion: First just output all possible combinations of values 

that could appear on the dice.
• This is just exhaustive search!
• In general, starting with exhaustive search and then adding 

conditions is not a bad idea
diceSum(2, 7); diceSum(3, 7);
{1, 1}
{1, 2}
{1, 3}
{1, 4}
{1, 5}
{1, 6}
{2, 1}
{2, 2}
{2, 3}
{2, 4}
{2, 5}
{2, 6}

{3, 1}
{3, 2}
{3, 3}
{3, 4}
{3, 5}
{3, 6}
{4, 1}
{4, 2}
{4, 3}
{4, 4}
{4, 5}
{4, 6}

{5, 1}
{5, 2}
{5, 3}
{5, 4}
{5, 5}
{5, 6}
{6, 1}
{6, 2}
{6, 3}
{6, 4}
{6, 5}
{6, 6}

{1, 1, 1}
{1, 1, 2}
{1, 1, 3}
{1, 1, 4}
{1, 1, 5}
{1, 1, 6}
{1, 2, 1}
{1, 2, 2}

...
{6, 6, 4}
{6, 6, 5}
{6, 6, 6}
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A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die ...
......

...

... ...
... ...

value for first die?

value for second die?

value for third die?

diceSum(4, 7);
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Initial solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0) {

if (sumAll(chosen) == desiredSum) {
cout << chosen << endl;                        // base case

}
} else {

for (int i = 1; i <= 6; i++) {
chosen.add(i);                                 // choose
diceSumHelper(dice - 1, desiredSum, chosen);   // explore
chosen.remove(chosen.size() - 1);              // un-choose

}
}

}

int sumAll(const Vector<int>& v) {   // adds the values in given vector
int sum = 0;
for (int k : v) { sum += k; }
return sum;

}
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Wasteful decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

...

diceSum(3, 5);
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Optimizations
• We need not visit every branch of the decision tree.

– Some branches are clearly not going to lead to success.
– We can preemptively stop, or prune, these branches.

• Inefficiencies in our dice sum algorithm:
– Sometimes the current sum is already too high.

• (Even rolling 1 for all remaining dice would exceed the desired sum.)

– Sometimes the current sum is already too low.
• (Even rolling 6 for all remaining dice would exceed the desired sum.)

– The code must re-compute the sum many times.
• (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)
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diceSum solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0 && desiredSum == 0) {

cout << chosen << endl;
} else if (dice > 0 && (dice <= desiredSum && desiredSum <= dice*6)) {

for (int i = 1; i <= 6; i++) {
chosen.add(i);
diceSum(dice - 1, desiredSum - i, chosen);
chosen.removeBack();

}
}

}


