
This document is copyright (C) Stanford Computer Science, Marty Stepp, Victoria Kirst, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 11
Exhaustive Search
and Backtracking

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• New recursive problem-solving techniques

– Exhaustive Search
– Backtracking

3

Plan for Today
• New recursive problem-solving techniques

– Exhaustive Search
– Backtracking

4

Exhaustive search
• exhaustive search: Exploring every possible combination from a set

of choices.
– often implemented recursively
– Sometimes called recursive enumeration
Applications:
– producing all permutations of a set of values
– enumerating all possible names, passwords, etc.

• Often the search space consists of many decisions, each of which
has several available choices.
– Example: When enumerating all 5-letter strings, each of the 5 letters is

a decision, and each of those decisions has 26 possible choices.

5

Exhaustive search
A general pseudo-code algorithm for exhaustive search:

Explore(decisions):
– if there are no more decisions to make: Stop.

– else, let's handle one decision ourselves, and the rest by recursion.
for each available choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C.
• Un-choose C by returning parameters to original state (if necessary).

6

Exercise: printAllBinary
• Write a recursive function printAllBinary that accepts an

integer number of digits and prints all binary numbers that have
exactly that many digits, in ascending order, one per line.

– printAllBinary(2); printAllBinary(3);
00 000
01 001
10 010
11 011

100
101
110
111

7

printAllBinary solution
void printAllBinary(int numDigits) {

printAllBinaryHelper(numDigits, "");
}

void printAllBinaryHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

8

A tree of calls
• printAllBinary(2);

– This kind of diagram is called a call tree or decision tree.
– Think of each call as a choice or decision made by the algorithm:

• Should I choose 0 or 1 as the next digit?

digits soFar

2 ""

1 "0"

0 "00" 0 "01"

1 "1"

0 "10" 0 "11"

0 1

0 1 0 1

9

The base case
void printAllBinaryHelper(int digits, string soFar) {

if (digits == 0) {
cout << soFar << endl;

} else {
printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

– The base case is where the code stops after doing its work.
• pAB(3) -> pAB(2) -> pAB(1) -> pAB(0)

– Each call should keep track of the work it has done.

– Base case should print the result of the work done by prior calls.
• Work is kept track of in some variable(s) - in this case, string soFar.

10

Exercise: printDecimal
• Write a recursive function printDecimal that accepts an integer

number of digits and prints all base-10 numbers that have exactly
that many digits, in ascending order, one per line.

– printDecimal(2); printDecimal(3);
00 000
01 001
02 002
.. ...
98 997
99 998

999

11

printDecimal solution
void printDecimal(int digits) {

printDecimalHelper(digits, "");
}

void printDecimalHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

for (int i = 0; i < 10; i++) {
printDecimalHelper(digits - 1, soFar +

integerToString(i));
}

}
}

12

Announcements
• Homework 3 due on Wednesday at 5PM

• Midterm next Wednesday, 7/24 7-9PM

13

Plan for Today
• New recursive problem-solving techniques

– Exhaustive Search
– Backtracking

14

Backtracking
• Backtracking: Finding solution(s) by trying all possible paths and

then abandoning them if they are not suitable.

– a "brute force" algorithmic technique
– often implemented recursively
– Could involve looking for one solution

• If any of the paths found a solution, a solution exists! If none find a
solution, no solution exists

– Could involve finding all solutions
– Idea: it's exhaustive search with conditions

Applications:
– games: anagrams, crosswords, word jumbles, 8 queens, sudoku
– combinatorics and logic programming
– escaping from a maze

15

Backtracking: One Solution
A general pseudo-code algorithm for backtracking problems

searching for one solution
Backtrack(decisions):

– if there are no more decisions to make:
• if our current solution is valid, return true
• else, return false

– else, let's handle one decision ourselves, and the rest by recursion.
for each available valid choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C. If any of them find a

solution, return true
• Un-choose C by returning parameters to original state (if necessary).

– If no solutions were found, return false

16

Backtracking: All Solutions
A general pseudo-code algorithm for backtracking problems

searching for all solutions
Backtrack(decisions):

– if there are no more decisions to make:
• if our current solution is valid, add it to our list of found solutions
• else, do nothing or return

– else, let's handle one decision ourselves, and the rest by recursion.
for each available valid choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C. Keep track of which

solutions the recursive calls find.
• Un-choose C by returning parameters to original state (if necessary).

– Return the list of solutions found by all the helper recursive calls.

17

Exercise: Dice roll sum
• Write a function diceSum that accepts two integer parameters: a

number of dice to roll, and a desired sum of all die values. Output
all combinations of die values that add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);
{1, 1, 5}
{1, 2, 4}
{1, 3, 3}
{1, 4, 2}
{1, 5, 1}
{2, 1, 4}
{2, 2, 3}
{2, 3, 2}
{2, 4, 1}
{3, 1, 3}
{3, 2, 2}
{3, 3, 1}
{4, 1, 2}
{4, 2, 1}
{5, 1, 1}

{1, 6}
{2, 5}
{3, 4}
{4, 3}
{5, 2}
{6, 1}

18

Easier: Dice rolls
• Suggestion: First just output all possible combinations of values

that could appear on the dice.
• This is just exhaustive search!
• In general, starting with exhaustive search and then adding

conditions is not a bad idea
diceSum(2, 7); diceSum(3, 7);
{1, 1}
{1, 2}
{1, 3}
{1, 4}
{1, 5}
{1, 6}
{2, 1}
{2, 2}
{2, 3}
{2, 4}
{2, 5}
{2, 6}

{3, 1}
{3, 2}
{3, 3}
{3, 4}
{3, 5}
{3, 6}
{4, 1}
{4, 2}
{4, 3}
{4, 4}
{4, 5}
{4, 6}

{5, 1}
{5, 2}
{5, 3}
{5, 4}
{5, 5}
{5, 6}
{6, 1}
{6, 2}
{6, 3}
{6, 4}
{6, 5}
{6, 6}

{1, 1, 1}
{1, 1, 2}
{1, 1, 3}
{1, 1, 4}
{1, 1, 5}
{1, 1, 6}
{1, 2, 1}
{1, 2, 2}

...
{6, 6, 4}
{6, 6, 5}
{6, 6, 6}

19

A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die ...
......

...

... ...
... ...

value for first die?

value for second die?

value for third die?

diceSum(4, 7);

20

Initial solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0) {

if (sumAll(chosen) == desiredSum) {
cout << chosen << endl; // base case

}
} else {

for (int i = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

int sumAll(const Vector<int>& v) { // adds the values in given vector
int sum = 0;
for (int k : v) { sum += k; }
return sum;

}

21

Wasteful decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

...

diceSum(3, 5);

22

Optimizations
• We need not visit every branch of the decision tree.

– Some branches are clearly not going to lead to success.
– We can preemptively stop, or prune, these branches.

• Inefficiencies in our dice sum algorithm:
– Sometimes the current sum is already too high.

• (Even rolling 1 for all remaining dice would exceed the desired sum.)

– Sometimes the current sum is already too low.
• (Even rolling 6 for all remaining dice would exceed the desired sum.)

– The code must re-compute the sum many times.
• (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)

23

diceSum solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0 && desiredSum == 0) {

cout << chosen << endl;
} else if (dice > 0 && (dice <= desiredSum && desiredSum <= dice*6)) {

for (int i = 1; i <= 6; i++) {
chosen.add(i);
diceSum(dice - 1, desiredSum - i, chosen);
chosen.removeBack();

}
}

}

