
This document is copyright (C) Stanford Computer Science, Marty Stepp, Victoria Kirst, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 12
Backtracking

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• More practice!

– Exhaustive Search
– Backtracking

3

Exhaustive search
• Exhaustive search: Exploring every possible combination from a set

of choices. Often implemented recursively.

4

Exhaustive search
A general pseudo-code algorithm for exhaustive search:

Explore(decisions):
– if there are no more decisions to make: Stop.

– else, let's handle one decision ourselves, and the rest by recursion.
for each available choice C for this decision:
• Choose C by modifying parameters.
• Explore the remaining decisions that could follow C.
• Un-choose C by returning parameters to original state (if necessary).

5

Backtracking
• Backtracking: Finding solution(s) by trying all possible paths and

then abandoning them if they are not suitable.

– Idea: it's exhaustive search with conditions

6

Mental Model
• Choose: What are the choices for each decision? Do we need a for

loop?

• Explore: How do we make a choice? How are the parameters
changed? Do we need a wrapper function to add more parameters?
How should we use the return value of the recursive function?

• Un-Choose: How do we revert our choice? Do we need to explicitly
change parameters back to original state?

• Base Case: What should we do when we are out of decisions to
make?

7

Exercise: Dice roll sum
• Write a function diceSum that accepts two integer parameters: a

number of dice to roll, and a desired sum of all die values. Output
all combinations of die values that add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);
{1, 1, 5}
{1, 2, 4}
{1, 3, 3}
{1, 4, 2}
{1, 5, 1}
{2, 1, 4}
{2, 2, 3}
{2, 3, 2}
{2, 4, 1}
{3, 1, 3}
{3, 2, 2}
{3, 3, 1}
{4, 1, 2}
{4, 2, 1}
{5, 1, 1}

{1, 6}
{2, 5}
{3, 4}
{4, 3}
{5, 2}
{6, 1}

8

Initial solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0) {

if (sumAll(chosen) == desiredSum) {
cout << chosen << endl; // base case

}
} else {

for (int i = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

int sumAll(const Vector<int>& v) { // adds the values in given vector
int sum = 0;
for (int k : v) { sum += k; }
return sum;

}

9

Wasteful decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

...

diceSum(3, 5);

10

Optimizations
• We need not visit every branch of the decision tree.

– Some branches are clearly not going to lead to success.
– We can preemptively stop, or prune, these branches.

• Inefficiencies in our dice sum algorithm:
– Sometimes the current sum is already too high.

• (Even rolling 1 for all remaining dice would exceed the desired sum.)

– Sometimes the current sum is already too low.
• (Even rolling 6 for all remaining dice would exceed the desired sum.)

– The code must re-compute the sum many times.
• (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)

11

diceSum solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0 && desiredSum == 0) {

cout << chosen << endl;
} else if (dice > 0 && (dice <= desiredSum && desiredSum <= dice*6)) {

for (int i = 1; i <= 6; i++) {
chosen.add(i);
diceSum(dice - 1, desiredSum - i, chosen);
chosen.removeBack();

}
}

}

12

Exercise: Escape Maze
• Write a function escapeMaze(maze, row, col) that searches

for a path out of a given 2-dimensional maze. Return true if able to
escape, false if not.
– You can move 1 square at a time in any of the 4 directions.
– “Mark” your path along the way.
– “Taint” bad paths that do not work.
– Do not explore the same path twice.

13

Exercise: Escape Maze
• Write a function escapeMaze(maze, row, col) that searches

for a path out of a given 2-dimensional maze. Return true if able to
escape, false if not.

14

Maze Class
#include “Maze.h”

Member name Description
m.inBounds(row, col) true if within maze boundaries
m.isMarked(row, col) true if given cell is marked
m.isOpen(row, col) true if given cell is empty (no wall or mark)
m.isTainted(row, col) true if given cell has been tainted
m.isWall(row, col) true if given cell contains a wall
m.mark(row, col); sets given cell to be marked
m.numRows(), m.numCols() returns dimensions of maze
m.taint(row, col); sets given cell to be tainted
m.unmark(row, col); sets given cell to be not marked if marked
m.untaint(row, col); sets given cell to be not tainted if tainted

15

Mental Model
• Choose: What decisions do we have to make? What are our

choices?

• Explore: How should we modify our parameters after making a
choice?

• Un-Choose: How do we revert our choice?

• Base Case: What should we do when we are out of decisions to
make?

16

Mental Model
• Choose: What decisions do we have to make? What are our choices?

– Possible directions to take. North, south, west, east

• Explore: How should we modify our parameters after making a
choice?
– Each direction leads to a new (row, col)

• Un-Choose: How do we revert our choice?
– (row, col) is copied, so nothing!

• Base Case: What should we do when we are out of decisions to make?
– Return true or false

17

escapeMaze solution
bool escapeMaze(Maze& maze, int row, int col) {

if (!maze.inBounds(row, col)) return true;
else if (!maze.isOpen(row, col)) return false;
else {

// recursive case: try to escape in 4 directions
maze.mark(row, col);
if (escapeMaze(maze, row - 1, col)

|| escapeMaze(maze, row + 1, col)
|| escapeMaze(maze, row, col - 1)
|| escapeMaze(maze, row, col + 1)) {

return true; // one of the paths worked!
} else {

maze.taint(row, col);
return false; // all 4 paths failed; taint

}
}

}

18

Announcements
• Homework 3 due on Wednesday at 5PM

• Midterm next Wednesday, 7/24 7-9PM
– Logistics are released on the website

• http://web.stanford.edu/class/archive/cs/cs106b/cs106b.1198/exams/mid
term.html

– Practice midterm will be released soon

http://web.stanford.edu/class/archive/cs/cs106b/cs106b.1198/exams/midterm.html

19

Arms-Length Recursion
• Arm’s Length Recursion: Unnecessary tests are performed before

performing recursive calls. Considered bad style.
• Typically the tests try to avoid making a call into what would

otherwise be a base case.
• Example: escapeMaze – our code recursively tries to explore up,

down, left, and right. Some of those directions may lead to walls or
off the board. Shouldn’t we test before making calls in those
directions?

20

Arms-Length escapeMaze
// This code is bad! It uses arms-length recursion
bool escapeMaze(Maze& maze, int row, int col) {

maze.mark(row, col);
// recursive case: check each one by arm’s length
if (maze.inBounds(r-1,c) && maze.isOpen(r-1, c)) {

if (escapeMaze(r-1,c)) {return true; }
}
if (maze.inBounds(r+1,c) && maze.isOpen(r+1, c)) {

if (escapeMaze(r+1,c)) {return true; }
}
if (maze.inBounds(r,c-1) && maze.isOpen(r,c-1)) {

if (escapeMaze(r,c-1)) {return true; }
}
if (maze.inBounds(r,c+1) && maze.isOpen(r,c+1)) {

if (escapeMaze(r,c+1)) {return true; }
}
maze.taint(row, col);
return false; // all 4 paths failed; taint

}

21

Permutations
• Write a function permute that accepts a Vector of strings as a

parameter and outputs all possible rearrangements of the strings in
that vector.
– For example, if v contains {"a", "b", "c", "d"}, output the below

permutations

22

Permutations
• Each permutation is a set of decisions.

– Which character do I want to place first?
– Which character do I want to place second?

for (each possible first letter):
for (each possible second letter):

for (each possible third letter):
...

print!

23

Mental Model
• Choose: What decisions do we have to make? What are our choices?

• Explore: How should we modify our parameters after making a
choice?

• Un-Choose: How do we revert our choice?

• Base Case: What should we do when we are out of decisions to make?

24

Mental Model
• Choose: What decisions do we have to make? What are our choices?

– Possible strings to use. Any of remaining strings in the vector

• Explore: How should we modify our parameters after making a
choice?
– Build up a vector of strings used so far. We will need a wrapper

function for this extra parameter

• Un-Choose: How do we revert our choice?
– Update the vector of strings used so far

• Base Case: What should we do when we are out of decisions to make?
– Print out the permutation

25

permute solution
// Outputs all permutations of the given vector.
void permute(Vector<string>& v) {

Vector<string> chosen; permuteHelper(v, chosen);
}

void permuteHelper(Vector<string>& v, Vector<string>& chosen) {
if (v.isEmpty()) {

cout << chosen << endl;
} else {

for (int i = 0; i < v.size(); i++) {
string s = v[i];
v.remove(i);
chosen.add(s); // choose
permuteHelper(v, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose
v.insert(i,s);

}
}

}

26

Permute a String
• Write a function permute that accepts a string as a parameter

and outputs all possible rearrangements of the characters in that
string.

27

permute solution
// Outputs all permutations of the given string.
void permute(string s) {

permute(s, "");
}
void permuteHelper(string s, string chosen = "") {

if (s == "") {
cout << chosen << endl; // base case: nothing left

} else {
// recursive case: choose each possible next letter
for (int i = 0; i < s.length(); i++) {

string rest = s.substr(0, i) + s.substr(i + 1);
permuteHelper(rest, chosen + s[i]); // choose/explore

}
}

}

