
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 14
Pointers and Memory Management

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• How does the computer store memory? The stack and the heap
• Memory management and dynamic allocation – powerful tools that

allows us to create linked data structures (next two weeks of the
course)
– Structs – an easy way to group variables together
– Pointers and memory addresses – another way to refer to variables
– Arrays

• Points are tricky! I highly encourage reading chapter 11.

3

Plan for Today
• How does the computer store memory? The stack and the heap
• Memory management and dynamic allocation – powerful tools that

allows us to create linked data structures (next two weeks of the
course)
– Structs – an easy way to group variables together
– Pointers and memory addresses – another way to refer to variables
– Arrays

• Points are tricky! I highly encourage reading chapter 11.

4

Structs
• Like a class, but simpler

– Collection of variables together
– Easy way to create more complex types
struct Album {

string title;
int year;
string artist_name;
int artist_age;
int artist_num_kids;
string artist_spouse;

};

• You can declare a variable of this type and use "." to access fields
Album lifeChanges;
lifeChanges.year = 2017;
lifeChanges.title = "Life Changes";
cout << lifeChanges.year << endl;

5

Struct Design
• What's wrong with this struct design?

struct Album {
string title;
int year;

string artist_name;
int artist_age;
int artist_num_kids;
string artist_spouse;

};

• Style: awkward naming
• How many times do we construct the artist info?

6

Struct Design
Album lifeChanges = {

"Life Changes",
2017,
"Thomas Rhett",
28,
2,
"Lauren"

};

Album tangledUp = {
"Tangled Up",
2015,
"Thomas Rhett",
28,
2,
"Lauren"

};

• Redundant code to declare
and initialize these albums

7

Struct Design
Album lifeChanges = {

"Life Changes",
2017,
"Thomas Rhett",
28,
2,
"Lauren"

};

Album tangledUp = {
"Tangled Up",
2015,
"Thomas Rhett",
28,
2,
"Lauren"

};

• Redundant code to declare
and initialize these albums

• Redundant to store too
– Imagine if the artist info

took up a lot of space

"Life Changes"

2017

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

"Thomas Rhett"

28

2

"Lauren"

lifeChanges tangledUp

8

Fixing Redundancy
struct Album {

string title;
int year;

string artist_name;
int artist_age;
int artist_num_kids;
string artist_spouse;

};

Should probably be
another struct?

9

The Artist Struct
struct Album {

string title;
int year;

Artist artist;
};

struct Artist {
string name;
int age;
int num_kids;
string spouse;

};

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

10

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

Artist In Memory

"Life Changes"

2017

lifeChanges

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

"Thomas Rhett"

28

2

"Lauren"

thomas

11

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

thomas.num_kids++; // what happens?

Artful Redundancy

"Life Changes"

2017

lifeChanges

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

"Thomas Rhett"

28

2

"Lauren"

thomas

12

• The artist field should point to or refer to the "thomas" data
structure instead of storing it
- if only we could just tell the computer where in memory to look for the

thomas structure….
• In C++ - pointers!

What we want

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas

Please see
"thomas"
objectPlease see

"thomas"
object

13

Plan for Today
• How does the computer store memory? The stack and the heap
• Memory management and dynamic allocation – powerful tools that

allows us to create linked data structures (next two weeks of the
course)
– Structs – an easy way to group variables together
– Pointers and memory addresses – another way to refer to variables
– Arrays

• Points are tricky! I highly encourage reading chapter 11.

14

Computer Memory
• Creating a variable allocates memory (spot for the variable in the

computer)
– We number the spots in memory (just like houses) with a memory

address
• Can think of a computer's memory as a giant array, spread between stack and

heap

• Stack
– stores all the local variables, parameters, etc.
– manages memory automatically

• Heap
– memory that you manage
– Advantage: you get to decide when the memory is freed (instead of it

always disappearing at the end of a function)
– Disadvantage: you need to manage the memory yourself

15

Code Trace
int x = 22;
int y = 39;

Creating variables on the stack:
These lines declare and initialize two variables on
the stack

16

Code Trace
int x = 22;
int y = 39;
int *xPtr;

Creating a pointer:
xPtr will store a reference to an int
We say that a pointer "points to" a place in
memory, because it stores a memory address
Like all local variables, xPtr is on the stack
The type before the asterisk is the type the
pointer points to

17

Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;

Initializing a pointer:
xPtr now points to the variable x (the pointee)
The & operator gets the memory address of a
variable, which is now stored in xPtr

18

Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;

Changing pointee values:
Changes we make to a "pointee" (the object of a
pointer) can be accessed by the pointer

19

Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;

Creating a pointer:
Here we create another pointer, this
time pointing to the variable y

20

Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;

Accessing Pointees:
We can dereference a pointer using the *
operator
In this example, we add 1 to the value that
yPtr points to

21

The Stack
• A pointer is a special type that stores the address for a variable

int *pointer; // stores the memory address for an int
string *strPointer; // stores memory address for a string

• To create a variable on the stack, we just declare it (all variables
you've created in this class so far have been on the stack)
Album lifeChanges;
– We can get the memory address using an & (address operator)
Album *pointer = &lifeChanges;

22

Pointer Syntax Recap
• Declaring a pointer

type* name;
• Dereferencing a pointer

– Gets the variable from the address (the variable the pointer points to)
– Also uses the *

type variable = *pointer;
– To access a field in a pointer to a struct:

int year = (*album).year;
– Alternative syntax uses -> instead:

int year = album->year;

23

Pointer mystery
• As parameters, pointers work similarly to references.

void mystery(int a, int& b, int* c) {
a++;
(*c)--;
b += *c;
cout << a << " " << b << " " << *c << " " << endl;

}

int main() {
int a = 4;
int b = 8;
int c = -3;

cout << a << " " << b << " " << c << " " << endl;
mystery(c, a, &b);
cout << a << " " << b << " " << c << " " << endl;
return 0;

}

24

Announcements
• Exam logistics

– Midterm info online:
https://web.stanford.edu/class/cs106b/exams/midterm.html

– We don’t grade on style, but global variables are still not allowed
– General tips: use CodeStepByStep, section handouts, and redoing

problems from lecture for further practice
– Highly Recommended: Complete assignment 4 before the midterm –

backtracking will be tested. Assignment 4 will not be due until July 25th

though
– Lectures 14 and 15 are NOT included on the midterm.

• Though we may use a struct in a problem.

https://web.stanford.edu/class/cs106b/exams/midterm.html

25

Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;

Creating memory on the heap:
Only way to create memory on the heap is
with new
Asks the computer for more memory
You're responsible for unallocating (freeing)
the memory

26

Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;

Accessing Heap Memory:
Same as with pointers to memory on the stack
Use the * to dereference

27

Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
yPtr = &y;

Orphaned Memory:
If we lose all the pointers to a block of heap-allocated
memory, we say it's "orphaned"
There's no way to access it or tell the computer we're
done using it – that slows the computer down

28

Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
delete yPtr;

Freeing Memory:
To tell the computer we don't need the heap
memory anymore, we call delete
Every new needs a delete
If we dereference freed memory, unpredictable
behavior (crash!)
Stack memory is automatically freed when the
function ends

29

Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
delete yPtr;
yPtr = &y;

Reassigning Pointers:
After freeing the memory, we can reassign the
pointer without leaking memory
Calling delete changed the pointee not the pointer

30

Pointers and the Heap
• Creating a variable on the heap uses the new keyword

– Allocates memory on the heap and returns the location to store in the
pointer

– Note: the pointer itself is still a local variable (it has a name)

Album* lifeChanges = new Album;

• Freeing memory – everything created must be destroyed
– The Album will exist even if lifeChanges goes out of scope or changes

values
• "orphaning memory" – the Album isn't pointed to by anything anymore
• When memory is orphaned, we say the program has a memory leak
• Can cause your program to slow down

– To free the Album, use the delete keyword on the pointer
delete lifeChanges; // lifeChanges can be reassigned now

31

– What should the Album struct look like?

Album improvements

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas

Please see
"thomas"
objectPlease see

"thomas"
object

32

The Album Struct
struct Album {

string title;
int year;

Artist *artist;
};

struct Artist {
string name;
int age;
int num_kids;
string spouse;

};

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};

Album *lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};

33

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album *lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};
cout << tangledUp->artist->spouse << endl; // "Lauren"
// later in the code, maybe in a different function
delete thomas; delete tangledUp; delete lifeChanges;

Album improvements

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas

34

Null/garbage pointers
• null pointer: Memory address 0; "points to nothing".
• uninitialized pointer: points to a random address.

– If you dereference these, program will probably crash.

int x = 42;
int* p1 = nullptr; // stores 0
int* p2; // uninitialized
cout << p1 << endl; // 0
cout << *p1 << endl; // KABOOM
cout << *p2 << endl; // KABOOM

// testing for nullness
if (p1 == nullptr) {...} // true
if (p1) {...} // false
if (!p1) {...} // true

0x7f8e20 x 42
0x7f8e24 p1 0x0
0x7f8e28 p2 0x??????

35

Plan for Today
• How does the computer store memory? The stack and the heap
• Memory management and dynamic allocation – powerful tools that

allows us to create linked data structures (next two weeks of the
course)
– Structs – an easy way to group variables together
– Pointers and memory addresses – another way to refer to variables
– Arrays

• Points are tricky! I highly encourage reading chapter 11.

36

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Heap allocated memory persists:
One of the advantages of heap-
allocated memory is it persists after
the stack frame returns

37

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Arrays:
This line creates an array of size 3 on
the heap
Arrays are fixed-size – you can't make
them bigger or smaller
That block is pointed to by the
variable library

38

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Array Elements:
Arrays are originally uninitialized
You can access each element by index
(just like Vector)
Returns the actual element NOT a
pointer

39

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Deleting Arrays:
Just as new used the square brackets
to create the array, you must call
delete with square brackets to free
the array's memory

40

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
int size;
Album *myLibrary = makeLibrary(size);
// do something with library using size
delete[] myLibrary;
return 0;

}

Album *makeLibrary(int &size) {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;
return library;

}

Array Sizes:
Arrays don't have a length field, so we
need to store the size in a separate
variable

41

Arrays
• Sometimes, you want several blocks of memory, not just one block
• Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7];

• Freeing the array (notice the brackets):
delete[] arr;

• Warnings:
– Cannot change size (grow or shrink)
– No bounds-checking – the program will have undefined behavior

(crash)
– Need to store size separately

