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Plan for Today
• How does the computer store memory? The stack and the heap
• Memory management and dynamic allocation – powerful tools that 

allows us to create linked data structures (next two weeks of the 
course)
– Structs – an easy way to group variables together
– Pointers and memory addresses – another way to refer to variables
– Arrays

• Points are tricky! I highly encourage reading chapter 11.
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Structs
• Like a class, but simpler

– Collection of variables together
– Easy way to create more complex types
struct Album { 

string title; 
int year; 
string artist_name; 
int artist_age; 
int artist_num_kids;
string artist_spouse;

};

• You can declare a variable of this type and use "." to access fields
Album lifeChanges;
lifeChanges.year = 2017;
lifeChanges.title = "Life Changes";
cout << lifeChanges.year << endl;
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Struct Design
• What's wrong with this struct design?

struct Album { 
string title; 
int year;

string artist_name; 
int artist_age; 
int artist_num_kids; 
string artist_spouse;

};

• Style: awkward naming
• How many times do we construct the artist info?
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Struct Design
Album lifeChanges = { 

"Life Changes",
2017,
"Thomas Rhett",
28,
2, 
"Lauren"

};

Album tangledUp = { 
"Tangled Up",
2015,
"Thomas Rhett",
28,
2, 
"Lauren"

};

• Redundant code to declare 
and initialize these albums
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Struct Design
Album lifeChanges = { 

"Life Changes",
2017,
"Thomas Rhett",
28,
2, 
"Lauren"

};

Album tangledUp = { 
"Tangled Up",
2015,
"Thomas Rhett",
28,
2, 
"Lauren"

};

• Redundant code to declare 
and initialize these albums

• Redundant to store too
– Imagine if the artist info 

took up a lot of space

"Life Changes"

2017

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

"Thomas Rhett"

28

2

"Lauren"

lifeChanges tangledUp
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Fixing Redundancy
struct Album { 

string title; 
int year;

string artist_name; 
int artist_age; 
int artist_num_kids; 
string artist_spouse;

};

Should probably be 
another struct?



9

The Artist Struct
struct Album { 

string title; 
int year;

Artist artist;
};

struct Artist {
string name; 
int age; 
int num_kids; 
string spouse; 

};

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};
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Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

Artist In Memory

"Life Changes"

2017

lifeChanges

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

"Thomas Rhett"

28

2

"Lauren"

thomas
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Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

thomas.num_kids++; // what happens?

Artful Redundancy

"Life Changes"

2017

lifeChanges

"Thomas Rhett"

28

2

"Lauren"

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

"Thomas Rhett"

28

2

"Lauren"

thomas
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• The artist field should point to or refer to the "thomas" data 
structure instead of storing it
- if only we could just tell the computer where in memory to look for the 

thomas structure….
• In C++ - pointers!

What we want

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas

Please see 
"thomas" 
objectPlease see 

"thomas" 
object
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Computer Memory
• Creating a variable allocates memory (spot for the variable in the 

computer)
– We number the spots in memory (just like houses) with a memory 

address
• Can think of a computer's memory as a giant array, spread between stack and 

heap

• Stack
– stores all the local variables, parameters, etc.
– manages memory automatically

• Heap
– memory that you manage
– Advantage: you get to decide when the memory is freed (instead of it 

always disappearing at the end of a function)
– Disadvantage: you need to manage the memory yourself
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Code Trace
int x = 22;
int y = 39;

Creating variables on the stack:
These lines declare and initialize two variables on 
the stack



16

Code Trace
int x = 22;
int y = 39;
int *xPtr;

Creating a pointer:
xPtr will store a reference to an int
We say that a pointer "points to" a place in 
memory, because it stores a memory address
Like all local variables, xPtr is on the stack
The type before the asterisk is the type the 
pointer points to
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Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;

Initializing a pointer:
xPtr now points to the variable x (the pointee)
The & operator gets the memory address of a 
variable, which is now stored in xPtr
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Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;

Changing pointee values:
Changes we make to a "pointee" (the object of a 
pointer) can be accessed by the pointer
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Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;

Creating a pointer:
Here we create another pointer, this 
time pointing to the variable y
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Code Trace
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;

Accessing Pointees:
We can dereference a pointer using the * 
operator
In this example, we add 1 to the value that 
yPtr points to
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The Stack
• A pointer is a special type that stores the address for a variable

int *pointer; // stores the memory address for an int
string *strPointer; // stores memory address for a string

• To create a variable on the stack, we just declare it (all variables 
you've created in this class so far have been on the stack)
Album lifeChanges;
– We can get the memory address using an & (address operator)
Album *pointer = &lifeChanges;
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Pointer Syntax Recap
• Declaring a pointer

type* name;
• Dereferencing a pointer

– Gets the variable from the address (the variable the pointer points to)
– Also uses the *

type variable = *pointer;
– To access a field in a pointer to a struct:

int year = (*album).year;
– Alternative syntax uses -> instead:

int year = album->year;
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Pointer mystery
• As parameters, pointers work similarly to references.

void mystery(int a, int& b, int* c) {
a++;
(*c)--;
b += *c;
cout << a << " " << b << " " << *c << " " << endl;

}

int main() {
int a = 4;
int b = 8;
int c = -3;

cout << a << " " << b << " " << c << " " << endl;
mystery(c, a, &b);
cout << a << " " << b << " " << c << " " << endl;
return 0;

}
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Announcements
• Exam logistics

– Midterm info online: 
https://web.stanford.edu/class/cs106b/exams/midterm.html

– We don’t grade on style, but global variables are still not allowed
– General tips: use CodeStepByStep, section handouts, and redoing 

problems from lecture for further practice
– Highly Recommended: Complete assignment 4 before the midterm –

backtracking will be tested. Assignment 4 will not be due until July 25th

though
– Lectures 14 and 15 are NOT included on the midterm.

• Though we may use a struct in a problem.

https://web.stanford.edu/class/cs106b/exams/midterm.html
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Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;

Creating memory on the heap:
Only way to create memory on the heap is 
with new
Asks the computer for more memory
You're responsible for unallocating (freeing) 
the memory
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Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;

Accessing Heap Memory:
Same as with pointers to memory on the stack
Use the * to dereference
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Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
yPtr = &y;

Orphaned Memory:
If we lose all the pointers to a block of heap-allocated 
memory, we say it's "orphaned"
There's no way to access it or tell the computer we're 
done using it – that slows the computer down
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Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
delete yPtr;

Freeing Memory:
To tell the computer we don't need the heap 
memory anymore, we call delete
Every new needs a delete
If we dereference freed memory, unpredictable 
behavior (crash!)
Stack memory is automatically freed when the 
function ends
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Code Trace Continued
int x = 22;
int y = 39;
int *xPtr;
xPtr = &x;
x += 9;
int *yPtr = &y;
(*yPtr)++;
yPtr = new int;
*yPtr = 8;
delete yPtr;
yPtr = &y;

Reassigning Pointers:
After freeing the memory, we can reassign the 
pointer without leaking memory
Calling delete changed the pointee not the pointer
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Pointers and the Heap
• Creating a variable on the heap uses the new keyword

– Allocates memory on the heap and returns the location to store in the 
pointer

– Note: the pointer itself is still a local variable (it has a name)

Album* lifeChanges = new Album;

• Freeing memory – everything created must be destroyed
– The Album will exist even if lifeChanges goes out of scope or changes 

values
• "orphaning memory" – the Album isn't pointed to by anything anymore
• When memory is orphaned, we say the program has a memory leak
• Can cause your program to slow down

– To free the Album, use the delete keyword on the pointer
delete lifeChanges; // lifeChanges can be reassigned now
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– What should the Album struct look like?

Album improvements

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas

Please see 
"thomas" 
objectPlease see 

"thomas" 
object
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The Album Struct
struct Album { 

string title; 
int year;

Artist *artist;
};

struct Artist {
string name; 
int age; 
int num_kids; 
string spouse; 

};

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};

Album *lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};
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Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album *lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};
cout << tangledUp->artist->spouse << endl; // "Lauren"
// later in the code, maybe in a different function
delete thomas; delete tangledUp; delete lifeChanges;

Album improvements

"Life Changes"

2017

lifeChanges

"Tangled Up"

2015

tangledUp

"Thomas Rhett"

28

2

"Lauren"

thomas
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Null/garbage pointers
• null pointer: Memory address 0;  "points to nothing".
• uninitialized pointer: points to a random address.

– If you dereference these, program will probably crash.

int x = 42;
int* p1 = nullptr; // stores 0
int* p2; // uninitialized
cout <<  p1 << endl;   // 0
cout << *p1 << endl;   // KABOOM
cout << *p2 << endl; // KABOOM

// testing for nullness
if (p1 == nullptr) {...}  // true
if (p1)            {...}  // false
if (!p1)           {...}  // true

0x7f8e20 x 42
0x7f8e24 p1 0x0
0x7f8e28 p2 0x??????
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More Complicated Trace
struct Album { 

string title; 
int year; 
string artist; 

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Heap allocated memory persists:
One of the advantages of heap-
allocated memory is it persists after 
the stack frame returns
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More Complicated Trace
struct Album { 

string title; 
int year; 
string artist; 

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Arrays:
This line creates an array of size 3 on 
the heap
Arrays are fixed-size – you can't make 
them bigger or smaller
That block is pointed to by the 
variable library
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More Complicated Trace
struct Album { 

string title; 
int year; 
string artist; 

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Array Elements:
Arrays are originally uninitialized
You can access each element by index
(just like Vector) 
Returns the actual element NOT a 
pointer
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More Complicated Trace
struct Album { 

string title; 
int year; 
string artist; 

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Deleting Arrays:
Just as new used the square brackets 
to create the array, you must call 
delete with square brackets to free 
the array's memory
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More Complicated Trace
struct Album { 

string title; 
int year; 
string artist; 

};

int main() {
int size;
Album *myLibrary = makeLibrary(size);
// do something with library using size
delete[] myLibrary;
return 0;

}

Album *makeLibrary(int &size) {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;
return library;

}

Array Sizes:
Arrays don't have a length field, so we 
need to store the size in a separate 
variable
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Arrays
• Sometimes, you want several blocks of memory, not just one block
• Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7]; 

• Freeing the array (notice the brackets):
delete[] arr;

• Warnings:
– Cannot change size (grow or shrink)
– No bounds-checking – the program will have undefined behavior 

(crash)
– Need to store size separately


