
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 15
Classes and Stack Implementation

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

3

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

4

Why declare on the Heap?
Album createAlbum() {

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album lifeChanges{"Life Changes", 2017, thomas};
return lifeChanges;

}
int main() {

Album lifeChanges = createAlbum();
// what does memory look like here?
cout << lifeChanges.artist->name << endl;
return 0;

}

5

Why declare on the Heap?
Album createAlbum() {

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album lifeChanges{"Life Changes", 2017, thomas};
return lifeChanges;

}
int main() {

Album lifeChanges = createAlbum();
cout << lifeChanges.artist->name;
return 0;

}

6

Why declare on the Heap?
Album createAlbum() {

Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};

Album lifeChanges{"Life Changes",
2017, &thomas};

// what does memory look like here?
return lifeChanges;

}

int main() {
Album lifeChanges = createAlbum();
cout << lifeChanges.artist->name;

}

7

Why declare on the Heap?
Album createAlbum() {

Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};

Album lifeChanges{"Life Changes",
2017, &thomas};

// what does memory look like here?
return lifeChanges;

}

int main() {
Album lifeChanges = createAlbum();
cout << lifeChanges.artist->name;

}

8

Why declare on the Heap?
Album createAlbum() {

Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};

Album lifeChanges{"Life Changes",
2017, &thomas};

return lifeChanges;
}

int main() {
Album lifeChanges = createAlbum();
// what about here?
cout << lifeChanges.artist->name;

}

9

Why declare on the Heap?
Album createAlbum() {

Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};

Album lifeChanges{"Life Changes",
2017, &thomas};

return lifeChanges;
}

int main() {
Album lifeChanges = createAlbum();
// what about here?
cout << lifeChanges.artist->name;

}

10

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

11

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Heap allocated memory persists:
One of the advantages of heap-
allocated memory is it persists after
the stack frame returns

12

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Arrays:
This line creates an array of size 3 on
the heap
Arrays are fixed-size – you can't make
them bigger or smaller
That block is pointed to by the
variable album

13

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Array Elements:
Arrays are originally uninitialized
You can access each element by index
(just like Vector)
Returns the actual element NOT a
pointer

14

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
Album *myLibrary = makeLibrary();
// do something with library
delete[] myLibrary;
return 0;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

}

Deleting Arrays:
Just as new used the square brackets
to create the array, you must call
delete with square brackets to free
the array's memory

15

More Complicated Trace
struct Album {

string title;
int year;
string artist;

};

int main() {
int size;
Album *myLibrary = makeLibrary(size);
// do something with library using size
delete[] myLibrary;
return 0;

}

Album *makeLibrary(int &size) {
Album* library = new Album[3];
library[0] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;
return library;

}

Array Sizes:
Arrays don't have a length field, so we
need to store the size in a separate
variable

16

Arrays
• Sometimes, you want a several blocks of memory, not just one

block
– The blocks are stored next to each other

• Solution: array
• Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7];

• Freeing the array (notice the brackets):
delete[] arr;

• Warnings:
– Cannot change size (grow or shrink)
– No bounds-checking – the program will have undefined behavior

(crash)
– Need to store size separately

17

Announcements
• Exam logistics

– Midterm review session tomorrow in class. Bring questions/examples.
– Highly Encouraged: Complete assignment 4 before the midterm –

backtracking will be tested. Though Assn. 4 due date is Thursday, July
25th.

18

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

19

Motivation
• So far in this course, we have used many collection classes:

– Vector, Grid, Stack, Queue, Map, Set, HashMap, HashSet, Lexicon, ...

• Now let's explore how they are implemented.
– We will start by implementing our own version of a Stack class.

• To do so, we must learn about classes, arrays, and memory allocation.

– After that, we will implement several other collections:
• linked list
• binary tree set, map;
• hash table set, map
• priority queue
• ...

20

Classes and objects
• class: A template for a new type of objects.

– Allows us to add new types to the language.
– Examples: Date, Student, BankAccount

• object: Entity that combines state and behavior.

– object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects.

– abstraction: Separation between concepts and details.

21

Elements of a class
• member variables: State inside each object.

– Also called "instance variables" or "fields"
– Each object has a copy of each member.

• member functions: Behavior inside each object.
– Also called "methods"
– Each object has a copy of each method.
– The method can interact with the data inside that object.

• constructor: Initializes new objects as they are created.
– Sets the initial state of each new object.
– Often accepts parameters for the initial state of the fields.

22

Interface vs. code
• C++ separates classes into two kinds of code files:

.h: A "header" file containing the interface (declarations).

.cpp: A "source" file containing definitions or implementation
(method bodies).
• class Foo => must write both Foo.h and Foo.cpp.

• The content of .h files is #included inside .cpp files.
– Makes them aware of declarations of code implemented elsewhere.
– At compilation, all definitions are linked together into an executable.

23

Class declaration (.h)
#ifndef _classname_h
#define _classname_h

class ClassName {
public: // in ClassName.h

ClassName(parameters); // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)
returnType name(parameters) const;

private:
type name; // member variables
type name; // (data inside each object)

};

#endif
IMPORTANT: must put a semicolon at end of class declaration (argh)

Protection in case multiple .cpp files
include this .h, so that its contents
won't get declared twice

function promises not to change any of
the member variables

24

Class example (v1)
// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {
public:

BankAccount(string n, double d); // constructor
void deposit(double amount); // methods
void withdraw(double amount);
void getBalance() const;

private:
string name; // each BankAccount object
double balance; // has a name and balance

};

#endif

25

BankAccount.cpp
#include "BankAccount.h"

BankAccount::BankAccount(string name, double initDeposit) {
this->name = name;
balance = initDeposit;

}

void BankAccount::deposit(double amount) {
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}

Include Header
Include the .h file for the class, as
well as other files your class
implementation needs

26

BankAccount.cpp
#include "BankAccount.h"

BankAccount::BankAccount(string name, double initDeposit) {
this->name = name;
balance = initDeposit;

}

void BankAccount::deposit(double amount) {
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}

Constructor
Initialize the member variables
Notice that each method name is
prepended by the classname::
the this keyword indicates the
object, to differentiate from the local
variable

27

BankAccount.cpp
#include "BankAccount.h"

BankAccount::BankAccount(string name, double initDeposit) {
this->name = name;
balance = initDeposit;

}

void BankAccount::deposit(double amount) {
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}

Methods
Methods are also
prepended by the
classname
They can directly access
the member variables

28

BankAccount.cpp
#include "BankAccount.h"

BankAccount::BankAccount(string name, double initDeposit) {
this->name = name;
balance = initDeposit;

}

void BankAccount::deposit(double amount) {
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}

Const Methods
Const methods should have const at
the end, and they should not change
the member variables or call non-
const member functions

29

Using objects
// client code in bankmain.cpp
BankAccount ba1("Tyler", 1.25);
ba1.deposit(2.00);

BankAccount ba2("Kate", 9999.00);
ba2.withdraw(500.00);

• An object groups multiple variables together.
– Each object contains a name and balance field inside it.
– We can get/set them individually.
– Code that uses your objects is called client code.

name = "Tyler"
balance = 3.25

name = "Kate"
balance = 9499.00

ba1

ba2

30

The implicit parameter
• implicit parameter:

The object on which a member function is called.

– During the call ba1.deposit(...),
the object named ba1 is the implicit parameter.

– During the call ba2.withdraw(...),
the object named ba2 is the implicit parameter.

– The member function can refer to that object's member variables.
• We say that it executes in the context of a particular object.

• The function can refer to the data of the object it was called on.

• It behaves as if each object has its own copy of the member functions.

31

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

32

A Stack Class
• Recall: a Stack has O(1) push and pop operations
• Only need to add to the end
• Idea: we need the implementation of stack to store all the elements

the client added
• How could we implement a stack using an array?

33

How Stack works
• Inside a Stack is an array storing the elements you have added.

– Typically the array is larger than the data added so far, so that it has
some extra slots in which to put new elements later.
• We call this an unfilled array.

Stack<int> s;
s.push(42);
s.push(-5);
s.push(17);

index 0 1 2 3 4 5 6 7 8 9

value 42 -5 17 ? ? ? ? ? ? ?

size 3 capacity 10

34

Resize when out of space
// grows array to twice the capacity if needed
void ArrayStack::checkResize() {

if (size == capacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = 0; i < capacity; i++) {

bigger[i] = elements[i];
}
delete[] elements;
elements = bigger;
capacity *= 2;

}
}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 75 0 0 0 0 0 0 0 0 0

size 11 capacity 20

35

Plan for Today
• Continuing discussion of pointers from yesterday
• Arrays
• Classes in C++
• Putting it together: implementing Stack
• Templates: generalizing containers

36

Template class
• Template class: A class that accepts a type parameter(s).

– In the header and cpp files, mark each class/function as templated.
– Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

...
};

// ClassName.cpp
template<typename T>
type ClassName::name(parameters) {

...
}

37

Template .h and .cpp
• Because of an odd quirk with C++ templates, the separation

between .h header and .cpp implementation must be reduced.
– Either write all the bodies in the .h file (suggested),
– Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

...
};

#include "ClassName.cpp"
#endif // _classname_h

38

Overflow Slides
• Making objects Printable
• Destructors
• Class Constants

39

Operator Overloading
• operator overloading: Redefining the behavior of a common

operator in the C++ language.

• Syntax:
returnType operator op(parameters); // .h
returnType operator op(parameters) { // .cpp

statements;
}

– For example, a + b becomes operator+(Foo& a, Foo& b)

40

Make Objects Printable
• Make it easy to print your object to cout, overload <<

ostream& operator <<(ostream& out, Type& name) {
statements;
return out;

}

– ostream is a base class that represents cout, file output streams, ...

41

Example <<

42

Example ==

43

Destructor

44

Class Constants

