
This document is copyright (C) Stanford Computer Science, Marty Stepp, Julie Zelenski, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Keith Schwarz, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 15

Priority Queues and Heaps

reading:

Ch. 11.2, 11.4, 12.1 - 12.3

2

Prioritization problems

• print jobs: Lab printers accept jobs from all over the building.

Faculty jobs print before staff, then grad, ugrad student jobs.

• ER scheduling: A gunshot victim should be treated sooner than a

person with a cold, regardless of arrival time.

• We want a "queue" with these operations:

– add an element (print job, patient, etc.)

– get/remove the most "important" or "urgent" element

3

Priority Queue ADT

• priority queue: Provides fast access to its highest-priority element.

– enqueue: adds an element at a given priority

– peek: returns highest-priority value

– dequeue: removes/returns highest-priority value

pq.enqueue("if", 2);

pq.enqueue("from", 4);

...

"the":3
"for":3

"from":4

"you":3

"why":3

"bye":3

"down":4

"if":2 pq.dequeue()

"if"

4

PriorityQueue members

#include "priorityqueue.h"

PriorityQueue<string> faculty;

faculty.enqueue("Julie", 3); // semi urgent priority

faculty.enqueue("Marty", 5); // not urgent priority

returns true if queue contains no elements (size 0)pq.isEmpty()

returns the number of elements in the queuepq.size()

return/print a string such as "{3, 42, -7, 15}"out << pq

returns most urgent (minimum) priority element without
removing it; throws error if queue is empty

pq.peek()

returns priority of most urgent (minimum) priority
element; throws error if queue is empty

pq.peekPriority()

returns the value in the queue with most urgent
(minimum) priority; throws an error if queue is empty

pq.dequeue()

adds value to queue, with the given priority numberpq.enqueue(value, pri)

alters an existing element's priority to be more urgentpq.changePriority(value, pri)

removes all elements of the queuepq.clear()

5

Exercise: SL scheduling

• Write code to show in what order our SLs choose their LaIR hours.

– SLs with more seniority (quarters worked) get to choose first.

– Each line of the input file contains the year the SL began working with

us, and the quarter (1=fall, 2=winter, 3=spring, 4=summer).

– Input file format:

name year quarter

name year quarter

name year quarter

...

Zack 2014 2

Sara 2012 4

Tyler 2013 1

6

Exercise solution

PriorityQueue<string> SLs; // read the contents of sls.txt

ifstream input; // into a priority queue

input.open("sls.txt");

string slName;

int year;

int quarter;

while (input >> slName >> year >> quarter) {

// store with year,quarter as priority so that the SLs

// come out of the PQ in descending order of seniority

// (e.g. year=2013, qtr=4 => priority = 20134)

int priority = year * 10 + quarter;

SLs.enqueue(slName, priority);

}

// pull the SLs out of the PQ from most to least seniority

while (!SLs.isEmpty()) {

string sl = SLs.dequeue();

cout << sl << " picks next." << endl;

}

7

PQ as array

• PQ implemented using an unsorted array:

– Which operations are slow? enqueue? dequeue? peek?

– What is good/bad about this implementation?

255845priority

10capacity6size

t

5 6

q

4 7 8

a

2

m

3

bxvalue

910index

unsorted

8

PQ as sorted array

• PQ implemented using a sorted array:

– Which operations are slow? enqueue? dequeue? peek?

– What is good/bad about this implementation?

855542priority

10capacity6size

a

5 6

x

4 7 8

m

2

q

3

btvalue

910index

sorted

9

Heaps

• heap: A special arrangement of elements in an array.

– The start index is 1. (index 0 is empty and unused)

– Every index i has a "parent" index: i/2

and two "child" indexes: i*2, i*2 + 1

– Ordering: Parents must have lower priority than their children.

– called a "binary min-heap"

855452priority

10capacity6size

q

5

a

6

x

4 7 8

m

2

b

3

tvalue

910index

10

Min-heap add (enqueue)

– pq.enqueue("k", 1);

• enqueue: place new element at first empty index.

– But now it may be out-of-order.

– So swap it upward with its parent until it is in order.

•Is this fast or slow?

1855452priority

10capacity7size

q

5

a

6

x

4

k

7 8

m

2

b

3

tvalue

910index

11

Min-heap bubble-up

• The bubble-up process for "k":1 :

– index 7 (k:1) swaps up with index 3 (b:4)

– index 3 (k:1) swaps up with index 1 (t:2)

– Not every added element bubbles all the way to the top!

4855251priority

10capacity7size

q

5

a

6

x

4

b

7 8

m

2

t

3

kvalue

910index

bubble up "k"

12

Implementing peek

– pq.peek() --> "k"

– pq.peekPriority() --> 1

• Finding the min-priority element in a min-heap is trivial.

– It is always located at index 1!

• Is this fast or slow?

4855251priority

10capacity7size

q

5

a

6

x

4

b

7 8

m

2

t

3

kvalue

910index

13

Heap remove (dequeue)

– pq.dequeue() --> "k"

• When removing the min-priority element from a heap:

– First move the last element up to the start, index 1.

– Then swap it downward with its most-urgent child until in order.

•This process is called "bubbling down" or "percolating down".

• Is this fast or slow?

6857421priority

10capacity7size

e

5

v

6

p

4

y

7 8

c

2

f

3

kvalue

910index

14

Heap bubble-down

– move index 7 (y:6) up to index 1

– swap index 1 with most urgent child at index 2 (c:2)

– swap index 2 with most urgent child at index 5 (e:5)

857426priority

10capacity6size

e

5

v

6

p

4 7 8

c

2

f

3

yvalue

910index

867452priority

10capacity6size

y

5

v

6

p

4 7 8

e

2

f

3

cvalue

910index

15

Heap change priority

– pq.changePriority("a", 2);

• To implement a change-priority operation:

– Loop sequentially over the array to find the element

– Set its new priority and "bubble up" the element until in order

• This will restore the heap ordering property.

– Is this fast or slow?

91179853priority

10capacity7size

y

5

a

6

k

4

z

7 8

t

2

b

3

fvalue

910index

1) search for "a"

2) bubble up

16

Max-Heap

• max-heap: Parents must have higher priority than their children.

– All algorithms are the same, but when bubbling,

use > for comparison rather than <

9375248priority

10capacity7size

q

5

a

6

x

4

m

7 8

t

2

b

3

avalue

910index

