
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 20
Binary Search Trees

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• How to implement a Set

– The importance of choosing a good data structure
• Trees, a new kind of data structure
• ”Reading" trees today – modifying trees will be tomorrow

3

Review
• What were the pros of a linked list?

• What were the cons of a linked list?

4

Review
• What were the pros of a linked list?

– Easy to insert/remove

• What were the cons of a linked list?
– Difficult to search through

5

Designing a Set
• We've seen how to implement:

– Stack (array or linked list)
– Vector (array)
– Queue (linked list)

• How would we implement Set?
– Add
– Contains
– Remove

6

First Try
• Store all the elements in an unsorted array or linked list

– What is the Big-Oh of contains?
– What is the Big-Oh of adding an element?
– What is the Big-Oh of removing an element?

0 1 2 3 4 5 6 7 8 9 10

3 8 9 7 5 12 4 8 1 6 75

7

Another attempt
• What if we sorted the array?

– What is the Big-Oh of contains?
– What is the Big-Oh of adding an element?
– What is the Big-Oh of removing an element?

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

8

Binary Search
• Fast way to search for elements in a sorted array
• Looping through elements one by one is slow [O(N)]
• Idea:
Jump to the middle element:

if the middle is what we're looking for, we're done. Hooray!
if the middle is too small – we rule out the entire left side of
elements smaller than the middle element
if the middle is too big – we rule out the entire right side of
elements bigger than the middle element

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

9

Binary Search in Action
• Search for 8:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

10

Binary Search in Action
• Search for 8:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

11

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

12

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

13

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

14

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3
• Look at 8:

– it's just right! We return true

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

15

Binary Search in Action
• Search for 7:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

16

Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

17

Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

18

Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

19

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Look at 6:

– it's too small, so we rule out indices 0-3

• Look at 8:
– it's too big! We rule out elements 3-4

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

20

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Look at 6:

– it's too small, so we rule out indices 0-3

• Look at 8:
– it's too big! We rule out elements 3-4

• No elements left to search – we return false

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle

21

Sorted Array
• What if we sorted the array?

– What is the Big-Oh of contains?
• O(log N)

– What is the Big-Oh of adding an element?
• O(N)

– What is the Big-Oh of removing an element?
• O(N)

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

22

A Modification
• Problem: an array is slow to insert into or remove from
• Our solution was a linked list – have each element connected to

one other element
– Easy to add/remove elements
– Can't skip elements – need to go in order

• Maybe we can find some way to implement the jumps necessary
for binary search...

23

A Modification
• What are all the possible paths binary search could take on this

array?

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

13

6

2 8

5 11

23

17 29

22 31

24

A Modification
• We always jump to one of two elements in binary search

(depending on if the element we're looking at is too big or too
small)

• What if we had a Linked List where we stored two pointers,
allowing us to make those jumps quickly?

25

Binary Search Tree
• A tree is a data structure where each element (parent) stores two

or more pointers to other elements (its children)
– A doubly-linked list doesn't count because, just like outside of

computer science, a child can not be its own ancestor
• Each node in a binary tree has two pointers

– Some of these pointers may be nullptr (just like in a linked list)
– We'll see examples of non-binary trees in future lectures

• A binary search tree is a binary tree with special ordering
properties that make it easy to do binary search

• Similar to a Linked List:
– Each element in its own block of memory
– Have to travel through pointers (can't skip "generations")

26

(Binary) TreeNode
struct TreeNode {

int data; // assume that the tree stores ints
TreeNode *left;
TreeNode *right;

};

27

Binary Search Trees
• A binary search tree has the following property:

– All elements to the left of an element are smaller than that element
– All elements to the right of an element are bigger than that element
– Just like our sorted array!

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

13

6

2 8

5 11

23

17 29

22 31

28

Tree anatomy

13

6

2 8

5 11

23

17 29

22 31

leave
s

root

subtree

29

BST Contains

13

6

2 8

5 11

23

17 29

22 31

• How would you search a BST for an element?

30

BST Contains

13

6

2 8

5 11

23

17 29

22 31

• How would you search a BST for an element?
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

31

Trees and Recursion

13

6

2 8

5 11

23

17 29

22 31

• Trees are fundamentally recursive (subtrees are smaller trees)
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

32

Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr

33

Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr

34

Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr

35

Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr

36

Printing Trees

13

6

2 8

5 11

23

17 29

22 31

• We need to be able to print our Set
• How would we print a tree?

37

Printing Trees

13

6

2 8

5 11

23

17 29

22 31

• How would we print a tree?
– Need to recurse both left and right
– Traverse the tree!

• Most tree problems involve traversing the tree

38

Traversal trick
• To quickly generate a traversal:
– Trace a path counterclockwise.
– As you pass a node on the

proper side, process it.

• pre-order: left side
• in-order: bottom
• post-order: right side

•What kind of traversal does
a for-each loop in a Set do?

• pre-order: 17 4 1 6 32 24 81
• in-order: 1 4 6 17 24 32 81
• post-order: 1 6 4 24 81 32 17

8124

324

17

61

root

39

Announcements
• Assignment 5 is due tomorrow
• Assignment 6 will be released tomorrow

• Midterm Regrade Requests are open until Monday at 5PM

40

• Give pre-, in-, and post-order
traversals for the following tree:

Traversal exercise

386

915

42

root

39

41

• Give pre-, in-, and post-order
traversals for the following tree:

– pre: 42 15 9 86 3 39
– in: 15 42 86 9 3 39
– post: 15 86 39 3 9 42

Traversal exercise

386

915

42

root

39

42

print as traversal
• What happens if I put the following line of code at each of the

following locations?

cout << node->data << endl;

void print(TreeNode* node) {
// (A)
if (node != nullptr) {

// (B)
print(node->left);
// (C)
print(node->right);
// (D)

}
// (E)

}

43

Exercise: contains
• Write a function contains that accepts a tree node pointer as its

parameter and searches the tree for a given integer, returning
true if found and false if not.

•contains(root, 87) ® true
•contains(root, 60) ® true
•contains(root, 63) ® false
•contains(root, 44) ® false

8760

6121

55

42-3

root

44

contains solution
// Returns whether this BST contains the given integer.
// Assumes that the given tree is in valid BST order.
bool contains(TreeNode* node, int value) {

if (node == nullptr) {
return false; // base case: not found here

} else if (node->data == value) {
return true; // base case: found here

} else if (node->data > value) {
return contains(node->left, value);

} else { // root->data < value
return contains(node->right, value);

}
}

45

getMin/getMax
• Sorted arrays can find the smallest or largest element in O(1) time

(how?)
• How could we get the same values in a binary search tree?

9160

7229

55

4217

root

88

46

getMin/Max solution
// Returns the minimum/maximum value from this BST.
// Assumes that the tree is a nonempty valid BST.
int getMin(TreeNode* root) {

if (root->left == nullptr) {
return root->data;

} else {
return getMin(root->left);

}
}

int getMax(TreeNode* root) {
if (root->left == nullptr) {

return root->data;
} else {

return getMax(root->left);
}

}

9160

8729

55

42-3

root

47

Adding to a BST
• Suppose we want to add new values to the BST below.

– Where should the value 14 be added?
– Where should 3 be added? 7?

– If the tree is empty, where
should a new value be added?

1910

115

8

4

2 7

25

22

root

48

Adding exercise
• Draw what a binary search tree would look like if the following

values were added to an initially empty tree in this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77

49

Exercise: add
• Write a function add that adds a given integer value to the BST.

– Add the new value in the proper place to maintain BST ordering.

•tree.add(root, 49);

9160

8729

55

42-3

root

49

50

Add Solution
void add(TreeNode*& node, int value) {

if (node == nullptr) {
node = new TreeNode(value);

} else if (node->data > value) {
add(node->left, value);

} else if (node->data < value) {
add(node->right, value);

}
}

• Must pass the current node by reference for changes to be seen.

9160

8729

55

42-3

root

node

45

51

Free Tree
• To avoid leaking memory when discarding a tree, we must free the

memory for every node.
– Like most tree problems, often written recursively
– must free the node itself, and its left/right subtrees

– this is another traversal of the tree
• should it be pre-, in-, or post-order?

9160

8729

55

42

36

root

73

52

Free tree solution
void freeTree(TreeNode*& node) {

if (node == nullptr) {
return;

}
freeTree(node->left);
freeTree(node->right);
delete node;

}

53

Removing from a BST
• Suppose we want to remove values from the BST below.

– Removing a leaf like 4 or 22 is easy.
– What about removing 2? 19?

– How can you remove a node with
two large subtrees under it,
such as 15 or 9?

1910

155

9

4

2 7

25

22

root

128

54

Cases for removal
1. a leaf:
2. a node with a left child only:
3. a node with a right child only:

29

55

4217

root

remove(root, 17);

29

55

42

root

29

42

root

42

root

remove(root, 55);

remove(root, 29);

Replace with nullptr
Replace with left child
Replace with right child

55

Cases for removal
4. a node with both children:

9160

8729

55

4217

root

91

8729

60

4217

root

remove(root, 55);

72

72

replace with min from right
(replacing with max from left would also work)

56

Exercise: remove
• Add a function remove that accepts a root pointer and removes a

given integer value from the tree, if present. Remove the value in
such a way as to maintain BST ordering.

•remove(root, 73);
•remove(root, 29);
•remove(root, 87);
•remove(root, 55);

9160

8729

55

42

36

root

73

57

remove solution
// Removes the given value from this BST, if it exists.
// Assumes that the given tree is in valid BST order.
void remove(TreeNode*& node, int value) {

if (node == nullptr) {
return;

} else if (value < node->data) {
remove(node->left, value); // too small; go left

} else if (value > node->data) {
remove(node->right, value); // too big; go right

} else {
// value == node->data; remove this node!
// (continued on next slide)
...

58

remove solution
// value == node->data; remove this node!
if (node->right == nullptr) {

// case 1 or 2: no R child; replace w/ left
TreeNode* trash = node;
node = node->left;
delete trash;

} else if (node->left == nullptr) {
// case 3: no L child; replace w/ right
TreeNode* trash = node;
node = node->right;
delete trash;

} else {
// case 4: L+R both; replace w/ min from right
int min = getMin(node->right);
remove(node->right, min);
node->data = min;

}
}

}

59

Overflow
• We saw how to add to a binary search tree. Does it matter what

order we add in?
– Try adding: 50, 20, 75, 98, 80, 31, 150
– Now add the same numbers but in sorted order: 20, 31, 50, 75, 80, 98,

150

