CS 106B, Lecture 20
Binary Search Trees
Plan for Today

• How to implement a Set
 – The importance of choosing a good data structure
• Trees, a new kind of data structure
• "Reading" trees today – modifying trees will be tomorrow
Review

• What were the pros of a linked list?

• What were the cons of a linked list?
Review

• What were the pros of a linked list?
 – Easy to insert/remove

• What were the cons of a linked list?
 – Difficult to search through
Designing a Set

• We've seen how to implement:
 – Stack (array or linked list)
 – Vector (array)
 – Queue (linked list)

• How would we implement Set?
 – Add
 – Contains
 – Remove
First Try

• Store all the elements in an unsorted array or linked list
 – What is the Big-Oh of contains?
 – What is the Big-Oh of adding an element?
 – What is the Big-Oh of removing an element?
Another attempt

- What if we **sorted** the array?
 - What is the Big-Oh of contains?
 - What is the Big-Oh of adding an element?
 - What is the Big-Oh of removing an element?
Binary Search

- Fast way to search for elements in a **sorted array**
- Looping through elements one by one is slow [O(N)]
- Idea:

 Jump to the middle element:
 - if the middle is what we're looking for, we're done. Hooray!
 - if the middle is too small – we rule out the entire **left side** of elements smaller than the middle element
 - if the middle is too big – we rule out the entire **right side** of elements bigger than the middle element
Binary Search in Action

• Search for 8:

```
  2  5  6  8 11 13 17 22 23 29 31
```

0 1 2 3 4 5 6 7 8 9 10
Binary Search in Action

- Search for 8:

```
  0  1  2  3  4  5  6  7  8  9  10
  2  5  6  8 11 13 17 22 23 29 31
```

middle
Binary Search in Action

• Search for 8:
• Look at 13
 – it's too big, so we rule out indices 5-10
Binary Search in Action

• Search for 8:
• Look at 13
 – it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:
Binary Search in Action

• Search for 8:
 • Look at 13
 – it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:
 – it's too small, so we rule out indices 0-3
Binary Search in Action

- Search for 8:
 - Look at 13
 - it's too big, so we rule out indices 5-10
- Pick the new middle of the remaining elements
- Look at 6:
 - it's too small, so we rule out indices 0-3
- Look at 8:
 - it's just right! We return true

```
middle
```

```
0  1  2  3  4  5  6  7  8  9  10
2  5  6  8 11 13 17 22 23 29 31
```
• Search for 7:

```
 0 1 2 3 4 5 6 7 8 9 10
 2 5 6 8 11 13 17 22 23 29 31
```
Binary Search in Action

• Search for 7:
• Look at 13
 – it's too big, so we rule out indices 5-10
Binary Search in Action

• Search for 7:
• Look at 13
 – it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:
Binary Search in Action

• Search for 7:
• Look at 13
 – it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:
 – it's too small, so we rule out indices 0-3
Binary Search in Action

• Search for 8:
 • Look at 13
 – it's too big, so we rule out indices 5-10
• Look at 6:
 – it's too small, so we rule out indices 0-3
• Look at 8:
 – it's too big! We rule out elements 3-4
Binary Search in Action

• Search for 8:
• Look at 13
 – it's too big, so we rule out indices 5-10
• Look at 6:
 – it's too small, so we rule out indices 0-3
• Look at 8:
 – it's too big! We rule out elements 3-4
• No elements left to search – we return false

middle

0 1 2 3 4 5 6 7 8 9 10
2 5 6 8 11 13 17 22 23 29 31
Sorted Array

- What if we **sorted** the array?
 - What is the Big-Oh of contains?
 - $O(\log N)$
 - What is the Big-Oh of adding an element?
 - $O(N)$
 - What is the Big-Oh of removing an element?
 - $O(N)$
A Modification

• Problem: an array is slow to insert into or remove from
• Our solution was a linked list – have each element connected to one other element
 – Easy to add/remove elements
 – Can't skip elements – need to go in order
• Maybe we can find some way to implement the jumps necessary for binary search...
A Modification

• What are all the possible paths binary search could take on this array?
A Modification

- We always jump to one of two elements in binary search (depending on if the element we're looking at is too big or too small)
- What if we had a Linked List where we stored two pointers, allowing us to make those jumps quickly?
A tree is a data structure where each element (parent) stores two or more pointers to other elements (its children)

- A doubly-linked list doesn't count because, just like outside of computer science, a child can not be its own ancestor

Each node in a binary tree has two pointers

- Some of these pointers may be nullptr (just like in a linked list)
- We'll see examples of non-binary trees in future lectures

A binary search tree is a binary tree with special ordering properties that make it easy to do binary search

Similar to a Linked List:

- Each element in its own block of memory
- Have to travel through pointers (can't skip "generations")
struct TreeNode {
 int data; // assume that the tree stores ints
 TreeNode *left;
 TreeNode *right;
};
A binary search tree has the following property:

- All elements to the left of an element are smaller than that element.
- All elements to the right of an element are bigger than that element.
- Just like our sorted array!
Tree anatomy

root

subtree

Leaves:

- 5
- 11
- 17
- 22
- 31

Subtree:

- 6
- 13
- 23
- 17
- 29
• How would you search a BST for an element?
• How would you search a BST for an element?
• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• Trees are fundamentally **recursive** (subtrees are smaller trees)

• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• Search for 5
• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• Search for 5
• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• Search for 5

• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• Search for 5
• Start at root:
 – If root is too big, go left (entire right subtree is too big)
 – If root is too small, go right (entire left subtree is too small)
• We need to be able to print our Set
• How would we print a tree?
• How would we print a tree?
 – Need to recurse both left and right
 – Traverse the tree!
 • Most tree problems involve traversing the tree
Traversals trick

- To quickly generate a traversal:
 - Trace a path counterclockwise.
 - As you pass a node on the proper side, process it.
 - pre-order: left side
 - in-order: bottom
 - post-order: right side

What kind of traversal does a for-each loop in a Set do?

- pre-order: \[17 \ 4 \ 1 \ 6 \ 32 \ 24 \ 81\]
- in-order: \[1 \ 4 \ 6 \ 17 \ 24 \ 32 \ 81\]
- post-order: \[1 \ 6 \ 4 \ 24 \ 81 \ 32 \ 17\]
Announcements

- Assignment 5 is due **tomorrow**
- Assignment 6 will be released tomorrow
- Midterm Regrade Requests are open until Monday at 5PM
• Give pre-, in-, and post-order traversals for the following tree:
• Give pre-, in-, and post-order traversals for the following tree:

- pre: 42 15 9 86 3 39
- in: 15 42 86 9 3 39
- post: 15 86 39 3 9 42
What happens if I put the following line of code at each of the following locations?

```cpp
cout << node->data << endl;
```

```cpp
void print(TreeNode* node) {
    // (A)
    if (node != nullptr) {
        // (B)
        print(node->left);
        // (C)
        print(node->right);
        // (D)
    }
    // (E)
}
```
Exercise: contains

• Write a function **contains** that accepts a tree node pointer as its parameter and searches the tree for a given integer, returning true if found and false if not.

 • `contains(root, 87) → true`
 • `contains(root, 60) → true`
 • `contains(root, 63) → false`
 • `contains(root, 44) → false`
/ Returns whether this BST contains the given integer.
/ Assumes that the given tree is in valid BST order.

bool contains(TreeNode* node, int value) {
 if (node == nullptr) {
 return false; // base case: not found here
 } else if (node->data == value) {
 return true; // base case: found here
 } else if (node->data > value) {
 return contains(node->left, value);
 } else {
 return contains(node->right, value);
 }
}
getMin/getMax

- Sorted arrays can find the smallest or largest element in O(1) time (how?)
- How could we get the same values in a binary search tree?
// Returns the minimum/maximum value from this BST.
// Assumes that the tree is a nonempty valid BST.

int getMin(TreeNode* root) {
 if (root->left == nullptr) {
 return root->data;
 } else {
 return getMin(root->left);
 }
}

int getMax(TreeNode* root) {
 if (root->left == nullptr) {
 return root->data;
 } else {
 return getMax(root->left);
 }
}
Adding to a BST

Suppose we want to add new values to the BST below.

- Where should the value 14 be added?
- Where should 3 be added? 7?
- If the tree is empty, where should a new value be added?
Adding exercise

• Draw what a binary search tree would look like if the following values were added to an initially empty tree in this order:
Exercise: add

• Write a function **add** that adds a given integer value to the BST.
 – Add the new value in the proper place to maintain BST ordering.

 • `tree.add(root, 49);`
void add(TreeNode*& node, int value) {
 if (node == nullptr) {
 node = new TreeNode(value);
 } else if (node->data > value) {
 add(node->left, value);
 } else if (node->data < value) {
 add(node->right, value);
 }
}

• Must pass the current node by reference for changes to be seen.
To avoid leaking memory when discarding a tree, we must free the memory for every node.

- Like most tree problems, often written *recursively*
- must free the node itself, and its left/right subtrees

- this is another *traversal* of the tree
 - should it be pre-, in-, or post-order?
void freeTree(TreeNode*& node) {
 if (node == nullptr) {
 return;
 }
 freeTree(node->left);
 freeTree(node->right);
 delete node;
}
Removing from a BST

- Suppose we want to **remove** values from the BST below.
 - Removing a leaf like 4 or 22 is easy.
 - What about removing 2? 19?
 - How can you remove a node with two large subtrees under it, such as 15 or 9?
Cases for removal

1. a **leaf**:
 - Remove with `nullptr`

2. a node with a **left child only**:
 - Replace with left child

3. a node with a **right child only**:
 - Replace with right child

```
remove(root, 17);
remove(root, 29);
remove(root, 55);
remove(root, 29);
```

```
root  
   ↓   
  55  
   ↓   
  29  
   ↓   
 17  42

root  
   ↓   
  55  
   ↓   
  29  
   ↓   
 42

root  
   ↓   
  29  
   ↓   
42

root  
   ↓   
  42
```
4. a node with **both** children:
 replace with **min from right**
 (replacing with **max from left** would also work)

```plaintext
remove(root, 55);
```

![Diagram showing removal of node with both children](image)
Exercise: remove

• Add a function `remove` that accepts a root pointer and removes a given integer value from the tree, if present. Remove the value in such a way as to maintain BST ordering.

 • `remove(root, 73);`
 • `remove(root, 29);`
 • `remove(root, 87);`
 • `remove(root, 55);`
remove solution

// Removes the given value from this BST, if it exists.
// Assumes that the given tree is in valid BST order.

void remove(TreeNode*& node, int value) {
 if (node == nullptr) {
 return;
 } else if (value < node->data) {
 remove(node->left, value); // too small; go left
 } else if (value > node->data) {
 remove(node->right, value); // too big; go right
 } else {
 // value == node->data; remove this node!
 // (continued on next slide)
 ...
 }
}
// value == node->data; remove this node!
if (node->right == nullptr) {
 // case 1 or 2: no R child; replace w/ left
 TreeNode* trash = node;
 node = node->left;
 delete trash;
} else if (node->left == nullptr) {
 // case 3: no L child; replace w/ right
 TreeNode* trash = node;
 node = node->right;
 delete trash;
} else {
 // case 4: L+R both; replace w/ min from right
 int min = getMin(node->right);
 remove(node->right, min);
 node->data = min;
}
Overflow

- We saw how to add to a binary search tree. Does it matter what order we add in?
 - Try adding: 50, 20, 75, 98, 80, 31, 150
 - Now add the same numbers but in sorted order: 20, 31, 50, 75, 80, 98, 150