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Plan for Today
• How to implement a Set

– The importance of choosing a good data structure
• Trees, a new kind of data structure
• ”Reading" trees today – modifying trees will be tomorrow
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Review
• What were the pros of a linked list?

• What were the cons of a linked list?
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Review
• What were the pros of a linked list?

– Easy to insert/remove

• What were the cons of a linked list?
– Difficult to search through
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Designing a Set
• We've seen how to implement:

– Stack (array or linked list)
– Vector (array)
– Queue (linked list)

• How would we implement Set?
– Add
– Contains
– Remove
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First Try
• Store all the elements in an unsorted array or linked list

– What is the Big-Oh of contains?
– What is the Big-Oh of adding an element?
– What is the Big-Oh of removing an element?

0 1 2 3 4 5 6 7 8 9 10

3 8 9 7 5 12 4 8 1 6 75
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Another attempt
• What if we sorted the array?

– What is the Big-Oh of contains?
– What is the Big-Oh of adding an element?
– What is the Big-Oh of removing an element?

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31
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Binary Search
• Fast way to search for elements in a sorted array
• Looping through elements one by one is slow [O(N)]
• Idea:
Jump to the middle element:

if the middle is what we're looking for, we're done. Hooray!
if the middle is too small – we rule out the entire left side of 
elements smaller than the middle element
if the middle is too big – we rule out the entire right side of 
elements bigger than the middle element

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31
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Binary Search in Action
• Search for 8:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31
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Binary Search in Action
• Search for 8:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle



12

Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3
• Look at 8:

– it's just right! We return true

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 7:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 7:
• Look at 13

– it's too big, so we rule out indices 5-10
• Pick the new middle of the remaining elements
• Look at 6:

– it's too small, so we rule out indices 0-3

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Look at 6:

– it's too small, so we rule out indices 0-3

• Look at 8:
– it's too big! We rule out elements 3-4

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Binary Search in Action
• Search for 8:
• Look at 13

– it's too big, so we rule out indices 5-10
• Look at 6:

– it's too small, so we rule out indices 0-3

• Look at 8:
– it's too big! We rule out elements 3-4

• No elements left to search – we return false

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

middle
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Sorted Array
• What if we sorted the array?

– What is the Big-Oh of contains? 
• O(log N)

– What is the Big-Oh of adding an element?
• O(N)

– What is the Big-Oh of removing an element?
• O(N)

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31
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A Modification
• Problem: an array is slow to insert into or remove from
• Our solution was a linked list – have each element connected to 

one other element
– Easy to add/remove elements
– Can't skip elements – need to go in order

• Maybe we can find some way to implement the jumps necessary 
for binary search...
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A Modification
• What are all the possible paths binary search could take on this 

array?

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

13

6

2 8

5 11

23

17 29

22 31
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A Modification
• We always jump to one of two elements in binary search 

(depending on if the element we're looking at is too big or too 
small)

• What if we had a Linked List where we stored two pointers, 
allowing us to make those jumps quickly?
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Binary Search Tree
• A tree is a data structure where each element (parent) stores two 

or more pointers to other elements (its children)
– A doubly-linked list doesn't count because, just like outside of 

computer science, a child can not be its own ancestor
• Each node in a binary tree has two pointers

– Some of these pointers may be nullptr (just like in a linked list)
– We'll see examples of non-binary trees in future lectures

• A binary search tree is a binary tree with special ordering 
properties that make it easy to do binary search

• Similar to a Linked List:
– Each element in its own block of memory
– Have to travel through pointers (can't skip "generations")



26

(Binary) TreeNode
struct TreeNode {

int data; // assume that the tree stores ints
TreeNode *left;
TreeNode *right;

};
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Binary Search Trees
• A binary search tree has the following property:

– All elements to the left of an element are smaller than that element
– All elements to the right of an element are bigger than that element
– Just like our sorted array!

0 1 2 3 4 5 6 7 8 9 10

2 5 6 8 11 13 17 22 23 29 31

13

6

2 8

5 11

23

17 29

22 31
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Tree anatomy

13

6

2 8

5 11

23

17 29

22 31

leave
s

root

subtree
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BST Contains

13

6

2 8

5 11

23

17 29

22 31

• How would you search a BST for an element? 
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BST Contains

13

6

2 8

5 11

23

17 29

22 31

• How would you search a BST for an element?
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)
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Trees and Recursion

13

6

2 8

5 11

23

17 29

22 31

• Trees are fundamentally recursive (subtrees are smaller trees)
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)
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Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr
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Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr
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Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr
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Trees and Contains

13

6

2 8

5 11

23

17 29

22 31

• Search for 5
• Start at root:

– If root is too big, go left (entire right subtree is too big)
– If root is too small, go right (entire left subtree is too small)

curr



36

Printing Trees

13

6

2 8

5 11

23

17 29

22 31

• We need to be able to print our Set
• How would we print a tree?
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Printing Trees

13

6

2 8

5 11

23

17 29

22 31

• How would we print a tree?
– Need to recurse both left and right
– Traverse the tree!

• Most tree problems involve traversing the tree
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Traversal trick
• To quickly generate a traversal:
– Trace a path counterclockwise.
– As you pass a node on the

proper side, process it.

• pre-order: left side
• in-order: bottom
• post-order: right side

•What kind of traversal does
a for-each loop in a Set do?

• pre-order: 17 4  1  6 32 24 81
• in-order: 1  4  6 17 24 32 81
• post-order: 1  6  4 24 81 32 17

8124

324

17

61

root
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Announcements
• Assignment 5 is due tomorrow 
• Assignment 6 will be released tomorrow

• Midterm Regrade Requests are open until Monday at 5PM
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• Give pre-, in-, and post-order
traversals for the following tree:

Traversal exercise

386

915

42

root

39
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• Give pre-, in-, and post-order
traversals for the following tree:

– pre: 42 15 9 86 3 39
– in: 15 42 86 9 3 39
– post: 15 86 39 3 9 42

Traversal exercise

386

915

42

root

39
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print as traversal
• What happens if I put the following line of code at each of the 

following locations?

cout << node->data << endl;

void print(TreeNode* node) {
// (A)
if (node != nullptr) {

// (B)
print(node->left);
// (C)
print(node->right);
// (D)

}
// (E)

}
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Exercise: contains
• Write a function contains that accepts a tree node pointer as its 

parameter and searches the tree for a given integer, returning 
true if found and false if not.

•contains(root, 87) ® true
•contains(root, 60) ® true
•contains(root, 63) ® false
•contains(root, 44) ® false

8760

6121

55

42-3

root
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contains solution
// Returns whether this BST contains the given integer.
// Assumes that the given tree is in valid BST order.
bool contains(TreeNode* node, int value) {

if (node == nullptr) {
return false;   // base case: not found here

} else if (node->data == value) {
return true;    // base case: found here

} else if (node->data > value) {
return contains(node->left, value);

} else { // root->data < value
return contains(node->right, value);

}
}
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getMin/getMax
• Sorted arrays can find the smallest or largest element in O(1) time 

(how?)
• How could we get the same values in a binary search tree?

9160

7229

55

4217

root

88
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getMin/Max solution
// Returns the minimum/maximum value from this BST.
// Assumes that the tree is a nonempty valid BST.
int getMin(TreeNode* root) {

if (root->left == nullptr) {
return root->data;

} else {
return getMin(root->left);

}
}

int getMax(TreeNode* root) {
if (root->left == nullptr) {

return root->data;
} else {

return getMax(root->left);
}

}

9160

8729

55

42-3

root
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Adding to a BST
• Suppose we want to add new values to the BST below.

– Where should the value 14 be added?
– Where should 3 be added?  7?

– If the tree is empty, where
should a new value be added?

1910

115

8

4

2 7

25

22

root
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Adding exercise
• Draw what a binary search tree would look like if the following 

values were added to an initially empty tree in this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77
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Exercise: add
• Write a function add that adds a given integer value to the BST.

– Add the new value in the proper place to maintain BST ordering.

•tree.add(root, 49);

9160

8729

55

42-3

root

49
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Add Solution
void add(TreeNode*& node, int value) {

if (node == nullptr) {
node = new TreeNode(value);

} else if (node->data > value) {
add(node->left, value);

} else if (node->data < value) {
add(node->right, value);

}
}

• Must pass the current node by reference for changes to be seen.

9160

8729

55

42-3

root

node

45
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Free Tree
• To avoid leaking memory when discarding a tree, we must free the 

memory for every node.
– Like most tree problems, often written recursively
– must free the node itself, and its left/right subtrees

– this is another traversal of the tree
• should it be pre-, in-, or post-order?

9160

8729

55

42

36

root

73



52

Free tree solution
void freeTree(TreeNode*& node) {

if (node == nullptr) {
return;

}
freeTree(node->left);
freeTree(node->right);
delete node;

}
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Removing from a BST
• Suppose we want to remove values from the BST below.

– Removing a leaf like 4 or 22 is easy.
– What about removing 2?  19?

– How can you remove a node with
two large subtrees under it,
such as 15 or 9?

1910

155

9

4

2 7

25

22

root

128
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Cases for removal
1. a leaf:
2. a node with a left child only:
3. a node with a right child only:

29

55

4217

root

remove(root, 17);

29

55

42

root

29

42

root

42

root

remove(root, 55);

remove(root, 29);

Replace with nullptr
Replace with left child
Replace with right child
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Cases for removal
4. a node with both children:

9160

8729

55

4217

root

91

8729

60

4217

root

remove(root, 55);

72

72

replace with min from right
(replacing with max from left would also work)
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Exercise: remove
• Add a function remove that accepts a root pointer and removes a 

given integer value from the tree, if present.  Remove the value in 
such a way as to maintain BST ordering.

•remove(root, 73);
•remove(root, 29);
•remove(root, 87);
•remove(root, 55);

9160

8729

55

42

36

root

73
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remove solution
// Removes the given value from this BST, if it exists.
// Assumes that the given tree is in valid BST order.
void remove(TreeNode*& node, int value) {

if (node == nullptr) {
return;

} else if (value < node->data) {
remove(node->left, value);    // too small; go left

} else if (value > node->data) {
remove(node->right, value);   // too big; go right

} else {
// value == node->data; remove this node!
// (continued on next slide)
...
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remove solution
// value == node->data; remove this node!
if (node->right == nullptr) {

// case 1 or 2: no R child; replace w/ left
TreeNode* trash = node;
node = node->left;
delete trash;

} else if (node->left == nullptr) {
// case 3: no L child; replace w/ right
TreeNode* trash = node;
node = node->right;
delete trash;

} else {
// case 4: L+R both; replace w/ min from right
int min = getMin(node->right);
remove(node->right, min);
node->data = min;

}
}

}
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Overflow
• We saw how to add to a binary search tree. Does it matter what 

order we add in?
– Try adding: 50, 20, 75, 98, 80, 31, 150
– Now add the same numbers but in sorted order: 20, 31, 50, 75, 80, 98, 

150


