
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 22
Advanced Binary Trees

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others



2

Plan for Today
• Finish up BSTs

– Removal
• Advanced (Balanced) BSTs
• Non-BST binary trees

– Heaps
– Cartesian Trees

• Non-Binary Trees
– Tries (how to implement a Lexicon)



3

Removing from a BST
• Suppose we want to remove values from the BST below.

– Removing a leaf like 4 or 22 is easy.
– What about removing 2?  19?

– How can you remove a node with
two large subtrees under it,
such as 15 or 9?

1910

155

9

4

2 7

25

22

root

128



4

Cases for removal
1. a leaf:
2. a node with a left child only:
3. a node with a right child only:

29

55

4217

root

remove(root, 17);

29

55

42

root

29

42

root

42

root

remove(root, 55);

remove(root, 29);

Replace with nullptr
Replace with left child

Replace with right child



5

Cases for removal
4. a node with both children:

9160

8729

55

4217

root

91

8729

60

4217

root

remove(root, 55);

72

72

replace with min from right
(replacing with max from left would also work)



6

Exercise: remove
• Add a function remove that accepts a root pointer and removes a 

given integer value from the tree, if present.  Remove the value in 
such a way as to maintain BST ordering.

•remove(root, 73);
•remove(root, 29);
•remove(root, 87);
•remove(root, 55);

9160

8729

55

42

36

root

73



7

remove solution
// Removes the given value from this BST, if it exists.
// Assumes that the given tree is in valid BST order.
void remove(TreeNode*& node, int value) {

if (node == nullptr) {
return;

} else if (value < node->data) {
remove(node->left, value);    // too small; go left

} else if (value > node->data) {
remove(node->right, value);   // too big; go right

} else {
// value == node->data; remove this node!
// (continued on next slide)
...



8

remove solution
// value == node->data; remove this node!
if (node->right == nullptr) {

// case 1 or 2: no R child; replace w/ left
TreeNode* trash = node;
node = node->left;
delete trash;

} else if (node->left == nullptr) {
// case 3: no L child; replace w/ right
TreeNode* trash = node;
node = node->right;
delete trash;

} else {
// case 4: L+R both; replace w/ min from right
int min = getMin(node->right);
remove(node->right, min);
node->data = min;

}
}

}



This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Implementing TreeSet
and TreeMap



10

A BST set class
// TreeSet.h
// A set of integers represented as a binary search tree.
class TreeSet {

members;
...

private:
TreeNode* root; 

};

– This is basically how Stanford library's
Set class is implemented.

– Provides abstraction. You have been using a set the whole class 
without knowing how a BST works.

4021

295

17

62

root



11

Tree maps
• Converting a tree set into a tree map:

– Each tree node will store both a key and a value
– tree is BST-ordered by its keys
– keys must be comparable (have a < operator) for ordering

struct TreeMapNode {
string key;
int value;
TreeMapNode* left;
TreeMapNode* right;

};

root

key = "Locke"
val = 51

key = "Jack"
val = 36

key = "Kate"
val = 28

key = "Sayid"
val = 36

key = "Sawyer"
val = 49

key = "Desmond"
val = 49



12

Tree map details
• Each tree set operation corresponds to one in the tree map:

– add(value) ® put(key, value)
– contains(value) ® containsKey(key)
– remove(value) ® remove(key)
– must add an operation: get(key)

– What about containsValue?
• Would its code be similar to the

code for containsKey?

root

key = "Locke"
val = 51

key = "Jack"
val = 36

key = "Kate"
val = 28

key = "Sayid"
val = 36

key = "Sawyer"
val = 49

key = "Desmond"
val = 49



13

Announcements
• Assn. 6 Due Thursday

• Midterm regrade requests close tonight at 5PM

• Kate’s OH moved this week to tonight

• My OH on Tuesday 8/6 (tomorrow) are cancelled



14

Overflow
• We saw how to add to a binary search tree. Does it matter what 

order we add in?
– Try adding: 9, 6, 14, 4, 8, 19
– Now add the same numbers but in sorted order: 4, 6, 8, 9, 14, 19



This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Balanced Trees



16

Trees and balance
• balanced tree: One where for every node R, the height of R's 

subtrees differ by at most 1, and R's subtrees are also balanced.
– Runtime of add / remove / contains are closely related to height.
– Balanced tree's height is roughly log2 N.  Unbalanced is closer to N.

19

146

9

84

root

height = 3
(balanced)

14

19

9

root

8

6

4
height = 6
(unbalanced)



17

BST balance question
• Adding the following nodes to an empty BST in the following order

produces the tree at right:  22, 9, 34, 18, 3.

• Q: What is an order in which we
could have added the nodes to
produce an unbalanced tree?

A. 18, 9, 34, 3, 22
B. 9, 18, 3, 34, 22
C. 9, 22, 3, 18, 34
D. none of the above

22

9 34

183



18

AVL trees
• AVL tree: A binary search tree that uses modified add and remove 

operations to stay balanced as its elements change.
– basic idea: When nodes are added/removed,

repair tree shape until balance is restored.
• rebalancing is O(1); overall tree maintains an O(log N) height

8

25

3

rotate

8

253

11 11



19

Red-Black trees
• red-black tree: Gives each node a "color" of red or black.

– Root is black.  Root's direct children are red.  All leaves are black.
– If a node is red, its children must all be black.
– Every path downward from a node to the bottom must contain the 

same number of "black" nodes.



20

Splay trees
• splay tree: Rotates each element you access to the top/root

– very efficient when that element is accessed again (happens a lot)
– easy to implement and does not need height field in each node



This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Non-BST Binary Trees



22

Heaps
• What if you want to find the k-smallest elements in an unsorted 

Vector?
– Find the top 10 students in a class?

• What if you wanted to constantly insert and remove in sorted 
order?
– Model a hospital emergency room where individuals are seen in order 

of their urgency
– Priority Queue

• What's a good choice?



23

Heaps
• Idea: if we use a Vector, it takes a long time to insert or remove in 

sorted order (or search the Vector for the smallest element)
• If we use a binary search tree, it's fast to insert and remove (O(log 

N)) but it's slow to find the minimum/maximum element (O(log N))
• Idea: use a tree, but store the minimum/maximum element as the 

root
– Trees have log(N) insertion/deletion
– Looking at the root is O(1)



24

Heaps
• heap: A complete binary tree with vertical ordering:

– min-heap: all children must be ≥ parent's value
– max-heap: all children must be ≤ parent's value

– complete tree: all levels are full of children except perhaps the bottom 
level, in which all existing nodes are maximally to the left.
• Nice corollary: heaps are always balanced

996040

8020

10

50 76

85

65

a min-heap



25

Heap enqueue
• When adding to a heap, the value is first placed at bottom-right.

– To restore heap ordering, the newly added element is shifted 
("bubbled") up the tree until it reaches its proper place (we reach the 
root, or the element is smaller than its parent [min-heap]).

– Enqueue 15 at bottom-right; bubble up until in order.

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

20

15

60



26

Heap dequeue
• Remove the root, and replace it with the furthest-right ancestor
• To restore heap order, the improper root is shifted ("bubbled") 

down the tree by swapping with its smaller child.
– dequeue min of 10; swap up bottom-right leaf of 65; bubble down.

996040

8020

65

74 50

85 996050

8040

20

74 65

85

10

65

40

20

50

40

20

65

50

40

20



27

Cartesian Trees
• How would you quickly find the minimum/maximum element in an  

range?
– Maximum elevation on a hike?
– Best time to buy/sell a stock within a certain range of times?



28

Cartesian Trees
• The root stores the minimum (or maximum) element in the entire 

array
• The left subtree is then the minimum (or maximum) element in the 

range to the left of the root; the right subtree is the minimum (or 
maximum) element in the range to the right of the root
– Follows the min- (or max)-heap property: every parent is smaller (or 

bigger) than its child



29

Cartesian Trees
• What would the Cartesian tree look like for this array if we're trying 

to find the minimum value in a range?

0 1 2 3 4 5 6 7 8 9 10

9 13 8 4 6 12 2 14 3 7 5



30

Cartesian Trees
• What would the Cartesian tree look like for this array if we're trying 

to find the minimum value in a range?

0 1 2 3 4 5 6 7 8 9 10

9 13 8 4 6 12 2 14 3 7 5

2

4

8 6

9 12

3

14 5

7

13



31

Cartesian Trees
• How would we write the following function: 

findMinElemInRange(CartesianNode *node, int start, int end)

struct CartesianNode {
int index;
CartesianNode *left;
CartesianNode *right;

};



This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Tries



33

The Lexicon
• Lexicons are good for storing words

– contains
– containsPrefix
– add

• Implemented with a trie



34

Trie
• trie ("try"): A tree structure optimized for "prefix" searches

– The idea: instead of a binary tree, store a pointer for each character in 
the alphabet

– For English: each node has 26 children for A-Z
• We're going to use a simpler alphabet for our example: {A, E, H, S}

struct TrieNode {
bool isWord;
TrieNode * children[26]; 
// storing children depends on the alphabet

};

A E H S



35

Let's "Trie" an Example

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

Yellow nodes are words!



36

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• Start at root –
corresponds to 
empty string

• Every pointer we 
travel contributes 
one character to our 
final string



37

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• Example:
""



38

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• Example:
"a"



39

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• Example:
"as"



40

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• Example:
"as"
"as" is a word because 
its corresponding node 
is yellow (meaning 
isWord is true)



41

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• What are all the 
words in this trie?



42

Reading Words

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• What are all the 
words in this trie?

a
as
ashes
ha
haha
has
he
she



43

PrintAllWords

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• How could we write a 
function that prints 
all words in a trie?



44

PrintAllWords
void printAllWords(TrieNode *root) {

printAllWordsHelper(root, "");
}

void printAllWordsHelper(TrieNode *root, string str) {
if (root == nullptr) {

return;
}
if (root->isWord) {

cout << str << endl;
}
for (int i = 0; i < 26; i++) {

printAllWordsHelper(root->children[i], str + char('a' + i));
}

}



45

ContainsPrefix

A E H S
/

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ /

A E H S
/ /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / /

A E H S
/ / /

A E H S
/ / / /

A E H S
/ / / /

A E H S
/ / / /

• How could we write 
containsPrefix?
– containsPrefix("a") = 

true
– containsPrefix("hahas") 

= false
– What are some 

prefixes that don't exist 
in this trie?



46

containsPrefix
bool containsPrefix(TrieNode* node, string prefix) {

if (node == nullptr) {
return false;

}
if (prefix.length() == 0) {

return true;
}
return containsPrefix(node->children[prefix[0] - 'a'],

prefix.substr(1));
}


