CS 106B, Lecture 23 Graphs

Plan for Today

- Graphs!
 - How to model problems using a graph

ADT Flowchart

Google Maps

Molecules

Introducing: The Graph

- A graph is a mathematical structure for representing relationships
- Consists of nodes (aka vertices) and edges (aka arcs)
 - edges are the relationships, nodes are the items
- Examples:
 - Map: cities (nodes) are connected by roads (edges)
 - Molecules: atoms (nodes) are connected by bonds (edges)

Graph examples

- For each, what are the nodes and what are the edges?
 - Web pages with links
 - Functions in a program that call each other
 - Airline routes
 - Facebook friends
 - Course pre-requisites
 - Family trees
 - Paths through a maze

Boggle as a graph

- Q: If a Boggle board is a graph, what is a node? What is an edge?
 - **A.** Node = letter cube, Edge = Dictionary (lexicon)
 - **B.** Node = dictionary word; Edge = letter cube
 - **C.** Node = letter; Edge = between each letter that is part of a word
 - **D.** Node = letter cube; Edge = connection to neighboring cube
 - **E.** None of the above

Undirected vs. Directed

- Some relationships are mutual
 - Facebook

- Some are one-way
 - Twitter/Instagram
 - Doesn't mean that all relationships are non-mutual

Representing Graphs

- Two main ways:
 - Have each node store the nodes it's connected to (adjacency list)
 - Have a list of all the edges (edge list)
- The choice depends on the problem you're trying to solve
- You can sometimes represent graphs implicitly instead of explicitly storing the edges and nodes
 - e.g. Boggle, WordLadder
 - draw a picture to see the graph more clearly!
- Was the backtracking (wiki links) problem on the midterm a graph problem? How did we represent the graph?

Adjacency List

- Map<Node, Vector<Node>>
 - or Map<Node, Set<Node>>

Adjacency Matrix

- Store a boolean grid, rows/columns correspond to nodes
 - Alternative to Adjacency List

Edge List

- Store a Vector<*Edge*> (or Set<*Edge*>)
 - *Edge* struct would have the two nodes

Vector<Edge>

Edge Properties

- Not all edges are created equally
 - Some have greater weight
- Real life examples:
 - Flight costs
 - Miles on a road
 - Time spent on a road
- Store a number with each edge corresponding to its weight

Source: https://www.google.com/maps

Paths

- I want a job at Google. Do I know anyone who works there? What about someone who knows someone?
- I want to find this word on a board made of letters "next to" each other (Boggle)
- A path is a sequence of nodes with edges between them connecting two nodes
 - Could store edges instead of nodes (why?)
 - You know Jane. Jane knows
 Sally. Sally knows knows Sergey
 Brin, the founder of Google, so
 the path is:
 - You->Jane->Sally->Sergey

Other graph properties

- **reachable**: Vertex *u* is *reachable* from *v* if a path exists from *u* to *v*.
- **connected**: A graph is *connected* if every vertex is reachable from every other.
- **complete**: If every vertex has a direct edge to every other.

Loops and cycles

- cycle: A path that begins and ends at the same node.
 - example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
 - example: {c, d, a} or {U, W, V, U}.
 - acyclic graph: One that does not contain any cycles.
- **loop**: An edge directly from a node to itself.
 - Many graphs don't allow loops.

Types of Graphs

- Boggle?
 - undirected, unweighted, cyclic, connected
- A molecule?
 - undirected, weighted, potentially cyclic, connected
- A map of flights?
 - directed, weighted, cyclic, perhaps not connected
- A tree?
 - directed, acyclic graph, not connected

Announcements

• Assn. 6 is due Thursday

Finding Paths

- Easiest way: Depth-First Search (DFS)
 - Recursive backtracking!
- Finds a path between two nodes if it exists
 - Or can find all the nodes reachable from a node
 - Where can I travel to starting in San Francisco?
 - If all my friends (and their friends, and so on) share my post, how many will eventually see it?

DFS Details

- In an n-node, m-edge graph, takes O(m + n) time with an adjacency list
 - Visit each edge once, visit each node at most once
- Pseudocode:

```
dfs from v_1:
    mark v_1 as seen.
    for each of v_1's unvisited neighbors n:
        dfs(n)
```

- How could we modify the pseudocode to look for a specific path?
 - Recursive Backtracking
 - Look at maze example from earlier in the course

Finding Shortest Paths

- We can find paths between two nodes, but how can we find the shortest path?
 - Fewest number of steps to complete a task?
 - Least amount of edits between two words?
- When have we solved this problem before?

Breadth-First Search (BFS)

- Idea: processing a node involves knowing we need to visit all its neighbors (just like DFS)
- Need to keep a TODO list of nodes to process
- Which node from our TODO list should we process first if we want the shortest path?
 - The first one we saw?
 - The last one we saw?
 - A random node?

Breadth-First Search (BFS)

- Keep a Queue of nodes as our TODO list
- Idea: dequeue a node, enqueue all its neighbors
- Still will return the same nodes as reachable, just might have shorter paths

queue: a

queue: e, g

queue: e, g

queue: g, f

queue: g, f

queue: f, h

queue: f, h

queue: h

queue: h

queue: i

queue: i

queue: c

queue: c

queue: c

BFS Details

- In an n-node, m-edge graph, takes O(m + n) time with an adjacency list
 - Visit each edge once, visit each node at most once
- Pseudocode:

```
bfs from v_1:
    add v_1 to the queue.
    while queue is not empty:
        dequeue a node n
        enqueue n's unseen neighbors
```

• How could we modify the pseudocode to look for a specific path?