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Plan for Today
• Graphs!

– How to model problems using a graph
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ADT Flowchart
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Google Maps

Source: https://www.google.com/maps

https://www.google.com/maps
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Molecules

http://pngimg.com/uploads/molecule/molecule_PNG50.png
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Introducing: The Graph
• A graph is a mathematical structure for representing relationships
• Consists of nodes (aka vertices) and edges (aka arcs)

– edges are the relationships, nodes are the items

• Examples:
– Map: cities (nodes) are connected by roads (edges)
– Molecules: atoms (nodes) are connected by bonds (edges)
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Graph examples
• For each, what are the nodes and what are the edges?

– Web pages with links
– Functions in a program that call each other
– Airline routes
– Facebook friends
– Course pre-requisites
– Family trees
– Paths through a maze
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Boggle as a graph
• Q: If a Boggle board is a graph, what is a node? What is an edge?

A. Node = letter cube,  Edge = Dictionary (lexicon)
B. Node = dictionary word;  Edge = letter cube
C. Node = letter;  Edge = between each letter that is part of a word
D. Node = letter cube;  Edge = connection to neighboring cube
E. None of the above
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Undirected vs. Directed
• Some relationships are 

mutual
– Facebook

• Some are one-way
– Twitter/Instagram
– Doesn't mean that all 

relationships are non-mutual
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Representing Graphs
• Two main ways:

– Have each node store the nodes it's connected to (adjacency list)
– Have a list of all the edges (edge list)

• The choice depends on the problem you're trying to solve
• You can sometimes represent graphs implicitly instead of explicitly 

storing the edges and nodes
– e.g. Boggle, WordLadder
– draw a picture to see the graph more clearly!

• Was the backtracking (wiki links) problem on the midterm a graph 
problem? How did we represent the graph?
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Adjacency List
• Map<Node, Vector<Node>>

– or Map<Node, Set<Node>> Node    Set<Node>
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Adjacency Matrix
• Store a boolean grid, rows/columns correspond to nodes

– Alternative to Adjacency List

F T F T F

F F F F T

T F F F T

F F T F F

F F T F F
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Edge List
• Store a Vector<Edge> (or Set<Edge>)

– Edge struct would have the two nodes
Vector<Edge>
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Edge Properties
• Not all edges are created equally

– Some have greater weight
• Real life examples:

– Flight costs
– Miles on a road
– Time spent on a road

• Store a number with each edge 
corresponding to its weight

Source: https://www.google.com/maps

https://www.google.com/maps
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Paths
• I want a job at Google. Do I know anyone who works there? What 

about someone who knows someone?
• I want to find this word on a board made of letters "next to" each 

other (Boggle)
• A path is a sequence of nodes with edges between them 

connecting two nodes
– Could store edges instead of nodes (why?)
– You know Jane. Jane knows 

Sally. Sally knows knows Sergey 
Brin, the founder of Google, so 
the path is:
You->Jane->Sally->Sergey
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Other graph properties
• reachable: Vertex u is reachable from v

if a path exists from u to v.

• connected: A graph is connected if every
vertex is reachable from every other.

• complete: If every vertex has a direct
edge to every other.
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Loops and cycles
• cycle: A path that begins and ends at the same node.

– example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
– example: {c, d, a} or {U, W, V, U}.

– acyclic graph: One that does
not contain any cycles.

• loop: An edge directly from
a node to itself.
– Many graphs don't allow loops.
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Types of Graphs
• Boggle?

– undirected, unweighted, cyclic, connected
• A molecule?

– undirected, weighted, potentially cyclic, connected
• A map of flights?

– directed, weighted, cyclic, perhaps not connected
• A tree?

– directed, acyclic graph, not connected
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Announcements
• Assn. 6 is due Thursday
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Finding Paths
• Easiest way: Depth-First Search (DFS)

– Recursive backtracking!
• Finds a path between two nodes if it exists

– Or can find all the nodes reachable from a node
• Where can I travel to starting in San Francisco?
• If all my friends (and their friends, and so on) share my post, how many will 

eventually see it?
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DFS

If we've seen the node 
before, stop
Otherwise, visit all the 
unvisited nodes from this 
node
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DFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency 

list
– Visit each edge once, visit each node at most once

• Pseudocode:
dfs from v1:

mark v1 as seen.
for each of v1's unvisited neighbors n:
dfs(n)

• How could we modify the pseudocode to look for a specific path?
– Recursive Backtracking
– Look at maze example from earlier in the course
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Finding Shortest Paths
• We can find paths between two nodes, but how can we find the 

shortest path?
– Fewest number of steps to complete a task?
– Least amount of edits between two words?

• When have we solved this problem before?
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Breadth-First Search (BFS)
• Idea: processing a node involves knowing we need to visit all its 

neighbors (just like DFS)
• Need to keep a TODO list of nodes to process
• Which node from our TODO list should we process first if we want 

the shortest path?
– The first one we saw?
– The last one we saw?
– A random node?
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Breadth-First Search (BFS)
• Keep a Queue of nodes as our TODO list
• Idea: dequeue a node, enqueue all its neighbors
• Still will return the same nodes as reachable, just might have 

shorter paths
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BFS

a b c d

fe

g h i

queue:  a

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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BFS

a b c d

fe

g h i

queue:  e, g

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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BFS

a b c d

fe

g h i

queue:  e, g

Dequeue a node
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BFS

a b c d
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queue:  g, f
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BFS
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queue:  g, f

Dequeue a node
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Dequeue a node
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a b c d

fe

g h i

queue:  h

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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BFS

a b c d

fe

g h i

queue:  i

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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a b c d

fe

g h i

queue:  i

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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a b c d

fe

g h i

queue:  c

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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a b c d

fe

g h i

queue:  c

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue
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BFS

Dequeue a node
Otherwise, add all its 
unseen neighbors to the 
queue

a b c d

fe

g h i

queue:  c
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BFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency 

list
– Visit each edge once, visit each node at most once

• Pseudocode:
bfs from v1:

add v1 to the queue.
while queue is not empty:
dequeue a node n
enqueue n's unseen neighbors

• How could we modify the pseudocode to look for a specific path?


