
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 23
Graphs

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• Graphs!

– How to model problems using a graph

3

ADT Flowchart

4

Google Maps

Source: https://www.google.com/maps

https://www.google.com/maps

5

Molecules

http://pngimg.com/uploads/molecule/molecule_PNG50.png

6

Introducing: The Graph
• A graph is a mathematical structure for representing relationships
• Consists of nodes (aka vertices) and edges (aka arcs)

– edges are the relationships, nodes are the items

• Examples:
– Map: cities (nodes) are connected by roads (edges)
– Molecules: atoms (nodes) are connected by bonds (edges)

7

Graph examples
• For each, what are the nodes and what are the edges?

– Web pages with links
– Functions in a program that call each other
– Airline routes
– Facebook friends
– Course pre-requisites
– Family trees
– Paths through a maze

8

Boggle as a graph
• Q: If a Boggle board is a graph, what is a node? What is an edge?

A. Node = letter cube, Edge = Dictionary (lexicon)
B. Node = dictionary word; Edge = letter cube
C. Node = letter; Edge = between each letter that is part of a word
D. Node = letter cube; Edge = connection to neighboring cube
E. None of the above

9

Undirected vs. Directed
• Some relationships are

mutual
– Facebook

• Some are one-way
– Twitter/Instagram
– Doesn't mean that all

relationships are non-mutual

10

Representing Graphs
• Two main ways:

– Have each node store the nodes it's connected to (adjacency list)
– Have a list of all the edges (edge list)

• The choice depends on the problem you're trying to solve
• You can sometimes represent graphs implicitly instead of explicitly

storing the edges and nodes
– e.g. Boggle, WordLadder
– draw a picture to see the graph more clearly!

• Was the backtracking (wiki links) problem on the midterm a graph
problem? How did we represent the graph?

11

Adjacency List
• Map<Node, Vector<Node>>

– or Map<Node, Set<Node>> Node Set<Node>

12

Adjacency Matrix
• Store a boolean grid, rows/columns correspond to nodes

– Alternative to Adjacency List

F T F T F

F F F F T

T F F F T

F F T F F

F F T F F

13

Edge List
• Store a Vector<Edge> (or Set<Edge>)

– Edge struct would have the two nodes
Vector<Edge>

14

Edge Properties
• Not all edges are created equally

– Some have greater weight
• Real life examples:

– Flight costs
– Miles on a road
– Time spent on a road

• Store a number with each edge
corresponding to its weight

Source: https://www.google.com/maps

https://www.google.com/maps

15

Paths
• I want a job at Google. Do I know anyone who works there? What

about someone who knows someone?
• I want to find this word on a board made of letters "next to" each

other (Boggle)
• A path is a sequence of nodes with edges between them

connecting two nodes
– Could store edges instead of nodes (why?)
– You know Jane. Jane knows

Sally. Sally knows knows Sergey
Brin, the founder of Google, so
the path is:
You->Jane->Sally->Sergey

16

Other graph properties
• reachable: Vertex u is reachable from v

if a path exists from u to v.

• connected: A graph is connected if every
vertex is reachable from every other.

• complete: If every vertex has a direct
edge to every other.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

a

c

b

d

a

c

b

d

e

17

Loops and cycles
• cycle: A path that begins and ends at the same node.

– example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
– example: {c, d, a} or {U, W, V, U}.

– acyclic graph: One that does
not contain any cycles.

• loop: An edge directly from
a node to itself.
– Many graphs don't allow loops.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

18

Types of Graphs
• Boggle?

– undirected, unweighted, cyclic, connected
• A molecule?

– undirected, weighted, potentially cyclic, connected
• A map of flights?

– directed, weighted, cyclic, perhaps not connected
• A tree?

– directed, acyclic graph, not connected

19

Announcements
• Assn. 6 is due Thursday

20

Finding Paths
• Easiest way: Depth-First Search (DFS)

– Recursive backtracking!
• Finds a path between two nodes if it exists

– Or can find all the nodes reachable from a node
• Where can I travel to starting in San Francisco?
• If all my friends (and their friends, and so on) share my post, how many will

eventually see it?

21

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

22

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

23

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

24

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

25

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

26

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

27

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

28

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

29

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

30

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

31

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

32

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

33

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

34

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

35

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

36

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

37

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

38

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

39

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

40

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

41

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

42

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

43

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

44

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

45

DFS

If we've seen the node
before, stop
Otherwise, visit all the
unvisited nodes from this
node

46

DFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency

list
– Visit each edge once, visit each node at most once

• Pseudocode:
dfs from v1:

mark v1 as seen.
for each of v1's unvisited neighbors n:
dfs(n)

• How could we modify the pseudocode to look for a specific path?
– Recursive Backtracking
– Look at maze example from earlier in the course

47

Finding Shortest Paths
• We can find paths between two nodes, but how can we find the

shortest path?
– Fewest number of steps to complete a task?
– Least amount of edits between two words?

• When have we solved this problem before?

48

Breadth-First Search (BFS)
• Idea: processing a node involves knowing we need to visit all its

neighbors (just like DFS)
• Need to keep a TODO list of nodes to process
• Which node from our TODO list should we process first if we want

the shortest path?
– The first one we saw?
– The last one we saw?
– A random node?

49

Breadth-First Search (BFS)
• Keep a Queue of nodes as our TODO list
• Idea: dequeue a node, enqueue all its neighbors
• Still will return the same nodes as reachable, just might have

shorter paths

50

BFS

a b c d

fe

g h i

queue: a

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

51

BFS

a b c d

fe

g h i

queue: e, g

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

52

BFS

a b c d

fe

g h i

queue: e, g

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

53

BFS

a b c d

fe

g h i

queue: g, f

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

54

BFS

a b c d

fe

g h i

queue: g, f

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

55

BFS

a b c d

fe

g h i

queue: f, h

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

56

BFS

a b c d

fe

g h i

queue: f, h

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

57

BFS

a b c d

fe

g h i

queue: h

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

58

BFS

a b c d

fe

g h i

queue: h

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

59

BFS

a b c d

fe

g h i

queue: i

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

60

BFS

a b c d

fe

g h i

queue: i

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

61

BFS

a b c d

fe

g h i

queue: c

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

62

BFS

a b c d

fe

g h i

queue: c

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

63

BFS

Dequeue a node
Otherwise, add all its
unseen neighbors to the
queue

a b c d

fe

g h i

queue: c

64

BFS Details
• In an n-node, m-edge graph, takes O(m + n) time with an adjacency

list
– Visit each edge once, visit each node at most once

• Pseudocode:
bfs from v1:

add v1 to the queue.
while queue is not empty:
dequeue a node n
enqueue n's unseen neighbors

• How could we modify the pseudocode to look for a specific path?

