
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 4
File I/O and Debugging

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• File I/O (Input/Output)
• Assignment 1 Tips
• Streams + Strings

3

Plan for Today
• File I/O (Input/Output)
• Assignment 1 Tips
• Streams + Strings

4

Files
• Store data beyond the run of a program
• Easy way to gather a lot of information together (vs. user input)
• Stored in streams in C++

– To read files, declare an ifstream (input file stream)
– To write to files, declare an ofstream (output file stream)

5

Common File I/O Pattern
• Open File

– #include <fstream> // standard library pkg for files
– #include "filelib.h" // contains helpful methods

•string promptUserForFile(stream, prompt)
// asks user for filename and opens the file in stream

– If you already have the filename:
•stream.open("file.txt")

• Read/write to file (more on that soon)
• Close the file

– stream.close()

6

Stanford Library
#include "filelib.h"

7

Creating and Closing
ifstream infile;
promptUserForFile(infile, "File?");

char ch;
while(infile.get(ch)) {

// do something with ch
}

infile.close();

Same for every file-reading program
Creates ifstream object
Closes ifstream object

8

Opening File
ifstream infile;
promptUserForFile(infile, "File?");

char ch;
while(infile.get(ch)) {

// do something with ch
}

infile.close();

Asks for the user for the filename

9

Opening File Alternative
ifstream infile;
infile.open("File.txt");

char ch;
while(infile.get(ch)) {

// do something with ch
}

infile.close();

Good when you know the file to open

10

Reading Char by Char
ifstream infile;
promptUserForFile(infile, "File?");

char ch;
while(infile.get(ch)) {

// do something with ch
}

infile.close();

Declare the variable to read data into (ch)
While loop continues until read fails
- Every iteration of while loop is new char

11

Reading Line by Line
ifstream infile;
promptUserForFile(infile, "File?");

string line;
while(getline(infile, line)) {

// do something with line
}

infile.close(); Now reads each line (breaks on newline characters)
Still declare the line before the while loop
Still continues until getline fails; each while loop

iteration has a different line
Notice lowercase l of getline

12

Writing Output
ofstream outfile;
promptUserForFile(outfile, "File?");

string word = "output";
int x = 3;
outfile << word << x;

outfile.close();
Similar to reading formatted input
Works a lot like cout
use << (insertion operator)
Works with (basically) any type

13

File Exercise
• Write a function that asks the user for a filename. Your function

should print out statistics about this file including the number of
lines, and the number of vowels in the file.

Should print out:

There are 3 lines and 60 vowels.

Strange how memories can lie dormant for so many years.
Yet those memories can be awakened and brought forth fresh and new.
Just by something you've seen, heard, or the sight of an old familiar face.

14

File Solution
void countStatistics() {

ifstream infile;
promptUserForFile(infile, "Please input a

filename");
string line;
int numLines = 0;
int numVowels = 0;
while(getline(infile, line)) {

numLines++;
numVowels += countVowels(line);

}
infile.close();
cout << "There are " << numLines << " lines

and " << numVowels << " vowels" << endl;
}

int countVowels(string line) {
int numVowels = 0;
for (char ch : line) {

if (isVowel(ch)) {
numVowels++;

}
}
return numVowels;

}

bool isVowel(char ch) {
return ch == 'a' || ch == 'A' || ch == 'e' || ch == 'E' ||

ch == 'i' || ch =='I' || ch == 'o' || ch == 'O' ||
ch == 'u' || ch == 'U';

}

15

File Exercise
• Write a function that reads in the file "scores.txt”. Each line of this

file is formatted as name:score. An example would be “Tyler:78”.
Your function should print out the average of the scores.

Tyler:78
Ashley:92
Kate:100
…

16

File Solution
void avgScores(string filename = "scores.txt") {

ifstream infile;
infile.open(filename);

string line;
double scores = 0;
double numScores = 0;
while(getline(infile, line)) {

Vector<string> parts = stringSplit(line, ":");
scores += stringToInteger(parts[1]);
numScores++;

}
infile.close();
cout << "The average is " << scores / numScores << endl;

}

17

Plan for Today
• File I/O (Input/Output)
• Assignment 1 Tips
• Streams + Strings

18

Assn. 1
• Assignment 1 (Game of Life) will be released today; due

Wednesday, July 3, at 5PM. You can work in a pair.
– Start early!
– Ask for help! (Piazza is great for clarifying the assignment spec)
– Read and Re-read the spec!!!

• Qt Creator issues
– A great page to look through if you run into QtCreator issues is here:

http://web.stanford.edu/dept/cs_edu/qt-creator/qt-creator-
troubleshooting.shtml

– A lot of times you just need to re-initialize the project as described in
the link. And sometimes just restart QtCreator.

http://web.stanford.edu/dept/cs_edu/qt-creator/qt-creator-troubleshooting.shtml

19

Honor Code Note
• Assignment 1 (Game of Life)

– Honor Code Reminder: Please review the Honor Code handout on the
course website before beginning this assignment

– Any student who is found in violation of the Honor Code will fail the
course in addition to sanctions applied by OCS

20

Steps to Debugging
• Determine that you have a bug
• Isolate the bug's location
• Find the culprit code

21

Identifying a bug
• In order to find a bug, lots and lots of testing
• What is the behavior that you think is buggy (in words)?
• Why do you think that that behavior is buggy?

– Differs from given expected output?
– Not what you were expecting?

• Under what circumstances does the bug appear?
• Be specific!

22

Isolating the Bug
• Goal: where in the code could the bug be?
• Be creative – better to think of too many places than too few
• Identify different functions that could be the culprit

– Then run each function separately
– Print out parameters and return values
– Use the debugger!

23

Finding the Bug
• Once you've found the function, need to find the bug
• What does each line of code do?

– Use print statements or the debugger to verify your assumptions
– Explain each line of code to your partner or an inanimate object

• Draw pictures – keep track of values in data structures and variable
values

• If you still can't find it, get help!
– LaIR
– OH

Source: https://pixabay.com/en/duckling-toys-yellow-rubber-duck-2542277/

https://pixabay.com/en/duckling-toys-yellow-rubber-duck-2542277/

24

Using the Debugger
• Add a breakpoint – program will pause at that line of code

• "Step" through code execution, line by line

25

Print Debugging
• Alternative to debugger – personal choice (debugger is more

powerful, but doesn't represent collections well)
• Idea: print relevant information at every line
• Tips for good print debugging

– Give good messages at each line (slightly longer, but WAY better
output)

– Print variable values WITH the variable name
– Debug a section at a time (can be overwhelming otherwise)
– Add if statements to conditionally print

26

Plan for Today
• File I/O (Input/Output)
• Assignment 1 Tips
• Streams + Strings

27

istringstream
#include <sstream>

• An istringstream lets you tokenize a string.

// read specific word tokens from a string
istringstream input("Jenny Smith 8675309");
string first, last;
int phone;
input >> first >> last; // first="Jenny", last="Smith"
input >> phone; // 8675309

// read all tokens from a string
istringstream input2("To be or not to be");
string word;
while (input2 >> word) {

cout << word << endl; // To\nbe\nor\nnot\n ...
}

28

ostringstream
#include <sstream>

• An ostringstream lets you write output into a string buffer.
– Use the str method to extract the string that was built.

// produce a formatted string of output
int age = 42, iq = 95;
ostringstream output;
output << "Zoidberg's age is " << age << endl;
output << " and his IQ is " << iq << "!" << endl;
string result = output.str();

// result = "Zoidberg's age is 42\nand his IQ is 95!\n"

29

Formatted I/O
#include <iomanip>

– helps produce formatted output, a la printf

for (int i = 2; i <= 2000; i *= 10) { // 2 1.41
cout << left << setw(4) << i // 20 4.47

<< right << setw(8) << fixed // 200 14.14
<< setprecision(2) << sqrt(i) << endl; // 2000 44.72

}

Member name Description

setw(n) right-aligns next token in a field n chars wide

setfill(ch) sets padding chars inserted by setw to the given char (default ' ')

setbase(b) prints future numeric tokens in base-b

left, right left- or right-aligns tokens if setw is used

setprecision(d) prints future doubles with d digits after decimal

fixed prints future doubles with a fixed number of digits

scientific prints future doubles in scientific notation

30

Look Ahead
• Assignment 0 due tonight at 5PM
• Assignment 1 (Game of Life) will be released today; due

Wednesday, July 3, at 5PM. You can work in a pair
• No class on July 4th

– There is no section on July 4th either. This means section attendance
for next week is optional. We will record a section on Wednesday right
after class in the same room.

– We recommend if you have a section on Wednesday to still attend,
and if you have a section on Thursday to watch the taped section
online.

31

Bug: Mix lines/tokens
cout << "How old are you? ";
int age;
cin >> age;

cout << "And what's your name? ";
string name;
getline(cin, name);
cout << "Wow, " << name << " is " << age << "!" << endl;

// output:
// How old are you: 17
// And what's your name: Stuart
// Wow, is 17!

– Advice: Don't mix getline and >> on the same input stream.
– Advice: Always use Stanford getX methods to read from cin.

user input:

17\n
Stuart\n

