
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 5
Stacks and Big O

reading:
Programming Abstractions in C++, Chapter 4-5

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• Analyzing algorithms using Big O analysis

– Understand what makes an algorithm "good" and how to compare
algorithms

• Another type of collection: the Stack

3

Plan for Today
• Analyzing algorithms using Big O analysis

– Understand what makes an algorithm "good" and how to compare
algorithms

• Another type of collection: the Stack

4

Big O Intuition
• Lots of different ways to solve a problem
• Measure algorithmic efficiency

– Resources used (time, memory, etc.)
– We will focus on time

• Idea: algorithms are better if they take less time
• Problem: amount of time a program takes is variable

– Depends on what computer you're using, what other programs are
running, if your laptop is plugged in, etc...

5

Big O
• Idea: assume each statement of code takes some unit of time

– for the purposes of this class, that unit doesn't matter
• We can count the number of units of time and get the runtime
• Sometimes, the number of statements depends on the input – we'll

say the input size is N

6

Big O
statement1; // runtime = 1

for (int i = 1; i <= N; i++) { // runtime = N^2
for (int j = 1; j <= N; j++) { // runtime = N

statement2;
}

}

for (int i = 1; i <= N; i++) { // runtime = 3N
statement3;
statement4;
statement5;

}

// total = N^2 + 3N + 1

7

Big O
• The actual constant doesn't matter – so we get rid of the constants:
N2 + 3N + 1 -> N2 + N + 1

• Only the biggest power of N matters: N2 + N + 1 -> N2

– The biggest term grows so much faster than the other terms that the
runtime of that term "dominates"

• We would then say the code snippet has O(N2) runtime

8

Finding Big O
• Work from the innermost indented code out
• Realize that some code statements are more costly than others

– It takes O(N2) time to call a function with runtime O(N2), even though
calling that function is only one line of code

• Nested code multiplies
• Code at the same indentation level adds

9

What is the Big O?
int sum = 0;
for (int i = 1; i < 100000; i++) {

for (int k = 1; k <= N; k++) {
sum++;

}
}
Vector<int> v;
for (int x = 1; x <= N; x += 2) {

v.insert(0, x);
}
cout << v << endl;

10

Complexity Classes
• complexity class: A category of algorithmic efficiency based on the

algorithm's relationship to the input size "N".
Class Big-Oh If you double N, ...

constant O(1) unchanged
logarithmic O(log2 N) increases slightly
linear O(N) doubles
log-linear O(N log2 N) slightly more than doubles
quadratic O(N2) quadruples
quad-linear O(N2 log2 N) slightly more than quadruple
cubic O(N3) multiplies by 8
...
exponential O(2N) multiplies drastically
factorial O(N!) multiplies drastically

11

Announcements
• Style Guide

– Function prototypes

• Only use what we have learned in class so far

• No late days charged for Assn 0

• Use the output comparison tool for Assn 1!

12

Plan for Today
• Analyzing algorithms using Big O analysis

– Understand what makes an algorithm "good" and how to compare
algorithms

• Another type of collection: the Stack

13

ADTs – the Story so Far

14

A new ADT: the Stack
• A specialized data structure that only

allows a user to add, access, and
remove the top element
– "Last In, First Out” - LIFO
– Super fast (O(1)) for these operations

• Built directly into the hardware

• Main operations:
– push(value): add an element to

the top of the stack
– pop(): remove and return the top

element in the stack
– peek(): return (but do not remove)

the top element in the stack

stack

top 3
2

bottom 1

poppush

15

Stack examples
• Real life

– Pancakes
– Clothes
– Plates in the dining hall

• In computer science
– Function calls
– Keeping track of edits
– Pages visited on a website to go back to

16

Stack Syntax
#include "stack.h"

Stack<int> nums;
nums.push(1);
nums.push(3);
nums.push(5);
cout << nums.peek() << endl; // 5
cout << nums << endl; // {1, 3, 5}
nums.pop(); // nums = {1, 3}

s.isEmpty() O(1) returns true if stack has no elements
s.peek() O(1) returns top value without removing it;

throws an error if stack is empty
s.pop() O(1) removes top value and returns it;

throws an error if stack is empty
s.push(value); O(1) places given value on top of stack
s.size() O(1) returns number of elements in stack

17

Stack limitations/idioms
• You cannot access a stack's elements by index.

Stack<int> s;
...
for (int i = 0; i < s.size(); i++) {

do something with s[i]; // does not compile
}

• Instead, you pull elements out of the stack one at a time.

• common pattern: Pop each element until the stack is empty.

// process (and empty!) an entire stack
while (!s.isEmpty()) {

do something with s.pop();
}

18

Sentence Reversal
• Goal: print the words of a sentence in reverse order

– "Hello my name is Inigo Montoya" -> "Montoya Inigo is name my Hello"
– "Inconceivable" -> "Inconceivable"

• Assume characters are only letters and spaces
• How could we use a Stack?

19

Sentence Reversal Solution
void printSentenceReverse(const string &sentence) {

Stack<string> wordStack;
string word = "";
for (char c : sentence) {

if (c == SPACE) {
wordStack.push(word);
word = ""; // reset

} else {
word += c;

}
}
if (word != "") {

wordStack.push(word);
}
cout << " New sentence: ";
while (!wordStack.isEmpty()) {

word = wordStack.pop();
cout << word << SPACE;

}
cout << endl;

}

20

ADTs – the Story so Far

21

Look Ahead
• Assignment 1 (Game of Life) is due Wednesday, July 3, at 5PM. You

can work in a pair.
• No class on July 4th

– There is no section on July 4th either. This means section attendance for
this week is optional. We will record a section on Wednesday, right after
class in the same room.

– We recommend if you have a section on Wednesday to still attend, and
if you have a section on Thursday to watch the taped section online or
stay after lecture on Wednesday.

