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Plan for Today
• Analyzing algorithms using Big O analysis

– Understand what makes an algorithm "good" and how to compare 
algorithms

• Another type of collection: the Stack
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Big O Intuition
• Lots of different ways to solve a problem
• Measure algorithmic efficiency

– Resources used (time, memory, etc.)
– We will focus on time

• Idea: algorithms are better if they take less time
• Problem: amount of time a program takes is variable

– Depends on what computer you're using, what other programs are 
running, if your laptop is plugged in, etc...
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Big O
• Idea: assume each statement of code takes some unit of time

– for the purposes of this class, that unit doesn't matter
• We can count the number of units of time and get the runtime
• Sometimes, the number of statements depends on the input – we'll 

say the input size is N
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Big O
statement1;                         // runtime = 1

for (int i = 1; i <= N; i++) {      // runtime = N^2
for (int j = 1; j <= N; j++) {  // runtime = N

statement2;
}

}

for (int i = 1; i <= N; i++) {      // runtime = 3N
statement3;
statement4;
statement5;

}                                   

// total = N^2 + 3N + 1
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Big O
• The actual constant doesn't matter – so we get rid of the constants: 
N2 + 3N + 1 -> N2 + N + 1

• Only the biggest power of N matters: N2 + N + 1 -> N2

– The biggest term grows so much faster than the other terms that the 
runtime of that term "dominates"

• We would then say the code snippet has O(N2) runtime
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Finding Big O
• Work from the innermost indented code out
• Realize that some code statements are more costly than others

– It takes O(N2) time to call a function with runtime O(N2), even though 
calling that function is only one line of code

• Nested code multiplies
• Code at the same indentation level adds
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What is the Big O?
int sum = 0;
for (int i = 1; i < 100000; i++) {

for (int k = 1; k <= N; k++) {
sum++;

}
}
Vector<int> v;
for (int x = 1; x <= N; x += 2) {

v.insert(0, x);
}
cout << v << endl;
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Complexity Classes
• complexity class: A category of algorithmic efficiency based on the 

algorithm's relationship to the input size "N".
Class Big-Oh If you double N, ...

constant O(1) unchanged
logarithmic O(log2 N) increases slightly
linear O(N) doubles
log-linear O(N log2 N) slightly more than doubles
quadratic O(N2) quadruples
quad-linear O(N2 log2 N) slightly more than quadruple
cubic O(N3) multiplies by 8
... ... ...
exponential O(2N) multiplies drastically
factorial O(N!) multiplies drastically
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Announcements
• Style Guide

– Function prototypes

• Only use what we have learned in class so far

• No late days charged for Assn 0

• Use the output comparison tool for Assn 1!
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ADTs – the Story so Far
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A new ADT: the Stack
• A specialized data structure that only 

allows a user to add, access, and 
remove the top element
– "Last In, First Out” - LIFO
– Super fast (O(1)) for these operations

• Built directly into the hardware

• Main operations:
– push(value): add an element to 

the top of the stack
– pop(): remove and return the top 

element in the stack
– peek(): return (but do not remove) 

the top element in the stack

stack

top 3
2

bottom 1

poppush
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Stack examples
• Real life

– Pancakes
– Clothes
– Plates in the dining hall

• In computer science
– Function calls
– Keeping track of edits
– Pages visited on a website to go back to
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Stack Syntax
#include "stack.h"

Stack<int> nums;
nums.push(1);
nums.push(3);
nums.push(5);
cout << nums.peek() << endl; // 5
cout << nums << endl; // {1, 3, 5}
nums.pop(); // nums = {1, 3}

s.isEmpty() O(1) returns true if stack has no elements
s.peek() O(1) returns top value without removing it;

throws an error if stack is empty
s.pop() O(1) removes top value and returns it;

throws an error if stack is empty
s.push(value); O(1) places given value on top of stack
s.size() O(1) returns number of elements in stack
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Stack limitations/idioms
• You cannot access a stack's elements by index.

Stack<int> s;
...
for (int i = 0; i < s.size(); i++) {

do something with s[i]; // does not compile
}

• Instead, you pull elements out of the stack one at a time.

• common pattern: Pop each element until the stack is empty.

// process (and empty!) an entire stack
while (!s.isEmpty()) {

do something with s.pop();
}



18

Sentence Reversal
• Goal: print the words of a sentence in reverse order

– "Hello my name is Inigo Montoya" -> "Montoya Inigo is name my Hello"
– "Inconceivable" -> "Inconceivable"

• Assume characters are only letters and spaces
• How could we use a Stack?
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Sentence Reversal Solution
void printSentenceReverse(const string &sentence) { 

Stack<string> wordStack; 
string word = "";
for (char c : sentence) { 

if (c == SPACE) { 
wordStack.push(word); 
word = ""; // reset 

} else { 
word += c; 

} 
} 
if (word != "") { 

wordStack.push(word); 
} 
cout << " New sentence: "; 
while (!wordStack.isEmpty()) { 

word = wordStack.pop(); 
cout << word << SPACE; 

} 
cout << endl;

}
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ADTs – the Story so Far
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Look Ahead
• Assignment 1 (Game of Life) is due Wednesday, July 3, at 5PM. You 

can work in a pair.
• No class on July 4th

– There is no section on July 4th either. This means section attendance for 
this week is optional. We will record a section on Wednesday, right after 
class in the same room.

– We recommend if you have a section on Wednesday to still attend, and 
if you have a section on Thursday to watch the taped section online or 
stay after lecture on Wednesday.


