
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 6
Queues

reading:
Programming Abstractions in C++, Chapter 5.3

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Big O
What is the Big O?

Vector<int> v;
for (int x = 1; x <= N; x += 2) {

v.add(x);
}
while (!v.isEmpty()) {

cout << v.remove(0) << endl;
}

3

Plan for Today
• Another collection: the Queue

4

Queue
• What if we want to remove from the bottom instead of the top?
• We want "First In First Out" – FIFO

• Real World
– Lines at the dining hall (No cutting!)
– Escalators
– Anything first-come first-serve

• Computers
– Sending jobs to a printer
– Call services (being put on hold)

5

Queue
• Queue: ADT that retrieves elements in the order they were added.

– There are no indexes (just like a stack)
– Can only add to the end of the queue and remove from the front.

• Operations
– enqueue: add an element to the back
– dequeue: remove the front element
– peek: examine (but do NOT remove) the front element

6

Queue Syntax
#include "queue.h"

Queue<string> strs;
strs.enqueue("Hello");
strs.enqueue("World");
cout << strs.peek() << endl; // "Hello"
cout << strs << endl; // {"Hello", "World"}
strs.dequeue(); // strs = {"World"}

q.dequeue() O(1) removes front value and returns it; throws error if
queue is empty

q.enqueue(value) O(1) places given value at back of queue

q.isEmpty() O(1) returns true of queue has no elements

q.peek() O(1) returns front value without removing; throws an
error if queue is empty

q.size() O(1) returns number of elements in queue

7

Queue Question?
Queue<int> queue;
for (int i = 1; i <= 6; i++) {

queue.enqueue(i);
}
for (int i = 0; i < queue.size(); i++) {

cout << queue.dequeue() << " ";
}
cout << queue << " size " << queue.size() << endl;

A. 1 2 3 4 5 6 {} size 0
B. 1 2 3 {4, 5, 6} size 3
C. 1 2 3 4 5 6 {1, 2, 3, 4, 5, 6} size 6
D. none of the above

8

Exercise
Write a function repeat that accepts a queue of integers and
replaces every element with two copies of itself. For example:
{1, 2, 3} becomes {1, 1, 2, 2, 3, 3}

9

Solution
void repeat(Queue<int>& q) {

int size = q.size();
for (int i = 0; i < size; i++) {

int n = q.dequeue();
q.enqueue(n);
q.enqueue(n);

}
}

10

Queue Tips
• You cannot access a queue's elements by index.
• Instead, you dequeue elements out of the queue one at a time.

// process (and empty!) an entire queue
while (!q.isEmpty()) {

do something with q.dequeue();
}

• Be careful iterating over a queue if you are changing it.
// Save the size before changing the queue
int size = q.size();
for (int i = 0; i < size; i++) {

// do something with q.dequeue();
}

11

Mixing Stacks and Queues
How can we reverse the order of elements in a queue?

12

Mixing Stacks and Queues
How can we reverse the order of elements in a queue?

Queue<int> q {1, 2, 3}; // q={1, 2, 3}
Stack<int> s;
while (!q.isEmpty()) {

s.push(q.dequeue()); // q={} s={1, 2, 3}
}
while (!s.isEmpty()) {

q.enqueue(s.pop()); // q={3, 2, 1} s={}
}
cout << q << endl;

13

Exercise
Write a function mirror that accepts a queue of strings and
appends the queue’s contents to itself in reverse order. For
example:
{“a”, “b”, ”c”} becomes {“a”, “b”, “c”, “c “, “b”, ”a”}

14

Solution
void mirror(Queue<string>& q) {

Stack<string> s;
int size = q.size();
for (int i = 0; i < size; i++) {

string str = q.dequeue();
s.push(str);
q.enqueue(str);

}
while (!s.isEmpty()) {

q.enqueue(s.pop());
}

}

15

Deque
• Deque (“deck”): double-ended queue

– Can add/remove from either end
• Basic Operations

– enqueueFront, enqueueBack
– dequeueFront, deququeBack
– peekFront, peekBack

• Get queue and stack functionality in one data structure!

16

Look Ahead
• Assignment 1 (Game of Life) due Wednesday, July 3, at 5PM. You can

work in a pair.
• No class on July 4th

– There is no section on July 4th either. This means section attendance for
this week is optional. We will record a section on Wednesday, right after
class in the same room.

– We recommend if you have a section on Wednesday to still attend, and
if you have a section on Thursday to watch the taped section online or
stay after lecture on Wednesday.

