
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 7
Sets and Maps

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

ADTs So Far

3

Today’s Topics
• Sets (no duplicates allowed!)

• Lexicons

• Maps (map a key to a value)

4

CountUniqueWords
• One basic statistic about a text

is the number of unique words
it has
- Linguists and computer scientists

frequently start analysis with the
number of unique words

- Good indication of vocabulary

• Problem: how can we
determine the number of
unique words in a file?

5

Today’s Topics
• Sets (no duplicates allowed!)

• Lexicons

• Maps (map a key to a value)

6

Sets
• Only answers question of

membership
-No duplicates

• Operations
-contains(elem)
-add(elem)
-remove(elem)

• Comparison to Vector
-Does not maintain insertion order
-No duplicates
-Really fast at finding membership

7

Looping over Sets
• Sets don’t have indices, so we use a for-each loop
• Iterates in sorted order (alphabetical order for strings)
• Can’t edit while we iterate

Set<string> friends;
friends.add("Leland");
friends.add("Kate");

// prints in alphabetical order
for (string myFriend : friends) {

cout << "Hi, " << myFriend << endl;
cout << "Let's get dinner." << endl;

}

8

Good Operations to Know

9

Sets – Method List
s.add(value) O(log N) Adds an element to this set, if it was not already there

s.clear() O(N) Removes all elements from this set

s.contains(value) O(log N) Returns true if value is in this set

s.equals(set) O(N) Returns true if the two sets contain the same elements

s.first() O(log N) Returns the first value in the set in order

s.isEmpty() O(1) Returns true if the set contains no elements

s.isSubsetOf(s2) O(N) Returns true if all the elements in the set are also in s2

s.remove(value) O(log N) Removes an element from this set

s.size() O(1) Returns the number of elements in this set

s.toString() O(N) Converts the set to a printable string representation

10

Today’s Topics
• Sets (no duplicates allowed!)

• Lexicons

• Maps (map a key to a value)

11

Lexicons
• Set where the only type is string
• Can do everything a Set does
• Also answers the question – do any words

start with this prefix?
-lexicon.containsPrefix(prefix)

• Used to store dictionaries
• We’ll talk about lexicons more later

12

ADTs Expanded

13

Today’s Topics
• Sets (no duplicates allowed!)

• Lexicons

• Maps (map a key to a value)

14

Maps
• Stores pairs of information
-First half of the pair is called a key,

and the second half is the
associated value
-Find a value by looking up its

associated key
-Keys must be unique (just like

elements in a Set!)
• Comparison with Vector
-Vectors look up elements by index,

Maps look them up by key
-Need to declare two types (for the

key and the value)
-Ordered by key, not index

15

Map Syntax
• map.put(key, value)
-map[key] = value
-Adds the key if it wasn’t already in the map
-Otherwise edits its value

• map.get(key)
-map[key]
• This alternate syntax will create a key with the default value in the map

• map.remove(key)
-No effect if the key isn’t in the map

16

Map Example: Dictionary
ifstream file;
promptUserForFile(file, "Where is your dictionary?");
Map<string, string> dictionary;
string word;

while (getline(file, word)) {
string definition;
getline(file, definition);
dictionary[word] = definition;

}

while (true) {
string query = getLine("Word to look up?");
if (dictionary.containsKey(query)) {

cout << "The definition is " << dictionary[query] << endl;
} else {

cout << "I don't know that word!" << endl;
}

}

17

Looping over Maps
• Maps also don’t have indices, so we use a for-each loop over the keys
• Iterates in sorted order over the keys
• Can’t edit the keys while we iterate (can edit values)

Map<string, int> phonebook;
phonebook["Tyler"] = 5551234;
phonebook["Kate"] = 5559876;

// prints in alphabetical order
for (string name: phonebook) {

int phoneNumber = phonebook[name];
cout << "I’m going to call " << name;
cout << " at " << phoneNumber << endl;

}

18

Word Count
• We’ve found the number of unique words

in a file. Another statistic is how frequently
each word is used.

• Given a text file and a user-inputted word,
how frequently is that word used in the
file?

to be or not to be

File? tiny.txt

Word? to
"to" appears 2 times

Word? or
"or" appears 1 times tiny.txt

19

Solution
﻿int main() {

ifstream infile;
promptUserForFile(infile, "File?");
Map<string, int> map;
string word;
while (infile >> word) {

map[word]++;
}
infile.close();

string userWord = getLine("Enter a word (or enter to quit): ");
while (userWord != "") {

if (map.containsKey(userWord)) {
cout << "\"" << userWord << "\"" << " appears " << map[userWord] << " times."

<< endl;
}
userWord = getLine("Enter a word (or enter to quit): ");

}
return 0;

}

20

ADT Soup

21

Nesting ADTs: Where2Eat
• Problem: we want to schedule a dinner with

some group of our friends
• We have a text file with all our friends'

dinner preferences
• Given a group of friends going to a dinner,

where should we eat to maximize
happiness?

• We might not be able to find a place that
makes everyone happy – such is life

• Which ADT(s) should we use?

Ashley
In n Out
Chipotle
Axe and Palm

Ketan
Chipotle
Bytes Cafe

Karel
Bytes Café
Forbes Cafe

22

Solution
﻿int main() {

ifstream file;
file.open("restaurants.txt");
Map<string, Set<string> > map;

string myFriend;
while (getline(file, myFriend)) {

string restaurant;
while (getline(file, restaurant) &&

restaurant != "") {
map[myFriend] += restaurant;

}
}

﻿ Set<string> guests;
string guest = getLine("Enter a guest: ");

while (guest != "") {

while (guest != "") {
guests.add(guest);
guest = getLine("Enter a guest: ");

}
cout << "Here are the acceptable

restaurants:" << endl;
Set<string> restaurants;
for (string guest : guests) {

if (restaurants.isEmpty()) {
restaurants = map[guest];

} else {
restaurants *= map[guest];

}
}
for (string restaurant : restaurants) {

cout << restaurant << endl;
}

}
return 0;

}

23

Closing Remarks
• Sets/Maps do extend functionality past the vector unlike what we

saw with stack/queue. If stack/queue didn’t extend functionality,
why do we care about them?

• Example counting words in books using a vector and
vec.contains(…). Really slow. Now switch vector to set and goes
much faster. Why?

• Stack/queue does NOT have for-each loop. That would violate our
rule of only being able to see the “next” element.

24

Look Ahead
• Assignment 1 due today at 5PM
• Assignment 2 comes out today, due Wednesday, July 10 at 5PM

