CS 106B, Lecture 8
Recursion
Plan for Today

• Learn a powerful algorithmic technique called *recursion*
 – Exploit self-similarity in problems

• We will spend several days on recursion – don't worry if it doesn't make sense today
 – Goal: do as many examples as we can
 – You should **practice**: [CodeStepByStep](#), section problems, or examples from the textbook
 – Highly encourage the reading for this week!
Recursion

• **recursion**: Function that calls itself
 – Solving a problem using recursion depends on solving smaller (simpler) occurrences of the same problem until the problem is simple enough that you can solve it directly
 – Key question: "How is this problem self-similar?" – what are the smaller subproblems that make up the bigger problem?

• Occurs in many places in code and in real world:
 – Looking up a word in dictionary may involve looking up other words
 – Nested structures (trees, file folders, collections) can be self-similar
Recursive Programming

- **recursive programming**: Writing functions that call themselves to solve problems that are recursive in nature.
 - An equally powerful substitute for *iteration* (loops)
 - Particularly well-suited to solving certain types of problems
 - Leads to *elegant*, simplistic, short code (when used well)
 - A key component of many of our assignments in this course
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 1.
int factorial(int n) {
 int total = 1;
 for (int i = 1; i <= n; i++) {
 total *= i;
 }
 return total;
}

• Important observations:
 0! = 1! = 1
 4! = 4 * 3 * 2 * 1
 5! = 5 * 4 * 3 * 2 * 1
 = 5 * 4!
Recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 0.
int factorial(int n) {
 if (n <= 1) {
 return 1; // base case
 } else {
 return n * factorial(n - 1); // recursive case
 }
}

• The recursive code handles a small part of the overall task (multiplying by \(n \)), then makes a recursive call to handle the rest.
 – The recursive version is written without using any loops.
 • Recursion replaces the loop
 – We separate the code into a base case (a simple case that does not make any recursive calls), and a recursive case.
Recursive stack trace

```c
int factorial(int n) { // 1
    if (n <= 1) {        // base case
        return 1;        // base case
    } else {
        return n * factorial(n - 1); // recursive case
    }
}
int factorial(int n) { // 2
    if (n <= 1) {        // base case
        return 1;        // base case
    } else {
        return n * factorial(n - 1); // recursive case
    }
}
int factorial(int n) { // 3
    if (n <= 1) {        // base case
        return 1;        // base case
    } else {
        return n * factorial(n - 1); // recursive case
    }
}
int factorial(int n) { // 4
    if (n <= 1) {        // base case
        return 1;        // base case
    } else {
        return n * factorial(n - 1); // recursive case
    }
}
```
Recursion and cases

• Every recursive algorithm involves at least 2 cases:
 – **base case**: A simple occurrence that can be answered directly
 – **recursive case**: A more complex occurrence of the problem that cannot be directly answered, but can instead be described in terms of smaller occurrences of the same problem
 – *Key idea*: In a recursive piece of code, you handle a small part of the overall task yourself (usually the work involves modifying the results of the smaller problems), then make a recursive call to handle the rest.
 – Ask yourself, "How is this task **self-similar**?"
 • "How can I describe this algorithm in terms of a smaller or simpler version of itself?"
Three Rules of Recursion

• Every (valid) input must have a case (either recursive or base)
• There **must** be a base case that makes no recursive calls
• The recursive case must make the problem simpler and make forward progress to the base case
Recursive tracing

• Consider the following recursive function:

```c
int mystery(int n) {
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```

Q: What is the result of: `mystery(648)`?

- A. 8
- B. 9
- C. 54
- D. 72
- E. 648
Recursive stack trace

```c
int mystery(int n) {
    // n = 648
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}

int mystery(int n) {
    // n = 72
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}

int mystery(int n) {
    // n = 9
    if (n < 10) {
        return n;
    } else {
        int a = n / 10;
        int b = n % 10;
        return mystery(a + b);
    }
}
```
isPalindrome exercise

• Write a recursive function isPalindrome that accepts a string and returns true if it reads the same forwards as backwards.

 isPalindrome("madam") ↦ true
 isPalindrome("racecar") ↦ true
 isPalindrome("step on no pets") ↦ true
 isPalindrome("able was I ere I saw elba") ↦ true
 isPalindrome("Q") ↦ true
 isPalindrome("Java") ↦ false
 isPalindrome("rotater") ↦ false
 isPalindrome("byebye") ↦ false
 isPalindrome("notion") ↦ false

– What is a good base case?
isPalindrome

• What is our stopping point (*base case*)?
• How is this problem *self-similar*?
• What is the minimum *amount of work*?
• How can we make the problem *simpler* by doing the least amount of work?
isPalindrome

• What is our stopping point *(base case)*?
 – Empty string or string of length 1
• How is this problem *self-similar*?
 – Palindromes can be written as: \(x[\text{SMALLER_PALINDROME}]x\), where \(x\) stands for some letter
• What is the minimum *amount of work*?
 – Testing the equality of outside characters
• How can we make the problem *simpler* by doing the least amount of work?
 – Peel off the outside characters and test if the middle is a palindrome
// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
bool isPalindrome(string s) {
 if (s.length() < 2) { // base case
 return true;
 } else { // recursive case
 if (s[0] != s[s.length() - 1]) {
 return false;
 }
 string middle = s.substr(1, s.length() - 2);
 return isPalindrome(middle);
 }
}
Announcements

• Homework 2 due on Wednesday at **5PM**
• Homework 1 grades will be released by your section leader on or before Wednesday
• Alternate midterms are being scheduled this week. Keep an eye out for an email from Kate
int mystery(int n) {
 if (n < 10) {
 return (10 * n) + n;
 } else {
 int a = mystery(n / 10);
 int b = mystery(n % 10);
 return (100 * a) + b;
 }
}

Q: What is the result of: mystery(348) ?
A. 3828 B. 348348 C. 334488 D. 80403 E. none
Multiple calls tracing

```c
// call 1: 348
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}

// call 2a: 34
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}

// call 2b: 8
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}

// call 3a: 3
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}

// call 3b: 4
int mystery(int n) {
    if (n < 10) {
        return (10 * n) + n;
    } else {
        int a = mystery(n / 10);
        int b = mystery(n % 10);
        return (100 * a) + b;
    }
}
```
Recursive Big O

• Below is the "pseudocode" for finding Big O of a function
 – Note that this is not real code; this is to show the recursive nature of finding Big O
 – Self-similarity: find Big O of smaller code blocks and combine them
 – This Big O pseudocode doesn't cover function calls and some other cases (for pedagogical purposes)

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```cpp
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```cpp
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return $O(1)$
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```plaintext
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```plaintext
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```c
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```c++
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```c++
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```c++
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
}

cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock) +

for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}

cout << "Have a nice Life!" << endl;
```

```
O(N^2)
```
Finding Big O Recursively

```cpp
findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock)
```

```cpp
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```cpp
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

```python
def findBigO(codeSnippet):
    if codeSnippet is a single statement:
        return O(1)
    if codeSnippet is loop:
        return number of times loop runs * findBigO(loop inside)
    for codeBlock in codeSnippet:
        return the sum of findBigO(codeBlock) + O(1)
```

```python
for (int i = 0; i < N * N; i += 3) {
    for (int j = 3; j <= 219; j++) {
        cout << "sum: " << i + j << endl;
    }
}
```

```python
cout << "Have a nice Life!" << endl;
```
Finding Big O Recursively

findBigO(codeSnippet):
 if codeSnippet is a single statement:
 return O(1)
 if codeSnippet is loop:
 return number of times loop runs * findBigO(loop inside)
 for codeBlock in codeSnippet:
 return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
 for (int j = 3; j <= 219; j++) {
 cout << "sum: " << i + j << endl;
 }
}

cout << "Have a nice Life!" << endl;
Write a function `power` that accepts integer parameters for a base and exponent and computes base ^ exponent.

- Write a **recursive** version of this function (one that calls itself).
- Solve the problem **without using any loops**.

- What is our stopping point (**base case**)?
- How is this problem **self-similar**?
- What is the minimum **amount of work**?
- How can we make the problem **simpler** by doing the least amount of work?
// Returns base ^ exp.
// Assumes exp >= 1.
int power(int base, int exp) {
 if (exp == 1) {
 return base;
 } else {
 return base * power(base, exp - 1);
 }
}
The call stack

- Each previous call waits for the next call to finish.

```
cout << power(5, 3) << endl;

// first call:  5        3
int power(int base, int exp) {
    if (exp == 1) {
        // second call:  5        2
    } else {
        return base *
    }
}

// third call:  5        1
    return base;  // 5
    return base * power(base, exp - 1);
}
```
The real, even simpler, base case is an exp of 0, not 1:

```c
int power(int base, int exp) {
    if (exp == 0) {
        // base case; base^0 = 1
        return 1;
    } else {
        // recursive case: x^y = x * x^(y-1)
        return base * power(base, exp - 1);
    }
}
```

Recursion Zen: The art of properly identifying the best set of cases for a recursive algorithm and expressing them elegantly. Opposite is arms-length recursion (our informal term)
Preconditions

- **precondition**: Something your code *assumes is true* when called.
 - Often documented as a comment on the function's header:

    ```
    // Returns base ^ exp.
    // **Precondition**: exp >= 0
    int power(int base, int exp) {
    ```

 - Stating a precondition doesn't really "solve" the problem, but it at least documents our decision and warns the client what not to do.

 - What if the caller doesn't listen and passes a negative power anyway? What if we want to actually *enforce* the precondition?
throwing exceptions

error(expression);

– In Stanford C++ lib's "error.h"
– Generates an exception that will crash the program, unless it has code to handle ("catch") the exception.
– alternative: throw something
 • something can be an int, a string, etc.
• Why would anyone ever want a program to crash?
/ Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
 if (exp < 0) {
 throw "illegal negative exponent";
 } else ...
 ...
}