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Plan for Today
• Learn a powerful algorithmic technique called recursion

– Exploit self-similarity in problems

• We will spend several days on recursion – don't worry if it doesn't 
make sense today
– Goal: do as many examples as we can
– You should practice: CodeStepByStep, section problems, or examples 

from the textbook
– Highly encourage the reading for this week!

http://codestepbystep.com/
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Recursion
• recursion: Function that calls itself

– Solving a problem using recursion depends on solving
smaller (simpler) occurrences of the same problem until the problem is 
simple enough that you can solve it directly

– Key question: "How is this problem self-similar?" – what are the 
smaller subproblems that make up the bigger problem?

• Occurs in many places in code and in real world:
– Looking up a word in dictionary may involve looking up other words
– Nested structures (trees, file folders, collections) can be self-similar
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Recursive Programming
• recursive programming: Writing functions that call themselves to 

solve problems that are recursive in nature.

– An equally powerful substitute for iteration (loops)

– Particularly well-suited to solving certain types of problems

– Leads to elegant, simplistic, short code (when used well)

– A key component of many of our assignments in this course
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Non-recursive factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 1.
int factorial(int n) {

int total = 1;
for (int i = 1; i <= n; i++) {

total *= i;
}
return total;

}

• Important observations:
0! = 1! = 1
4! = 4 * 3 * 2 * 1
5! = 5 * 4 * 3 * 2 * 1

= 5 * 4!
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Recursive factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 0.
int factorial(int n) {

if (n <= 1) {                      // base case
return 1;

} else {
return n * factorial(n - 1);   // recursive case

}
}

• The recursive code handles a small part of the overall task 
(multiplying by n), then makes a recursive call to handle the rest.
– The recursive version is written without using any loops.

• Recursion replaces the loop
– We separate the code into a base case (a simple case that does not 

make any recursive calls), and a recursive case.
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Recursive stack trace
int factorial(int n) { // 4

if (n <= 1) {                      // base case
return 1;

} else {
return n * factorial(n - 1);   // recursive case

}
} int factorial(int n) { // 3

if (n <= 1) {                      // base case
return 1;

} else {
return n * factorial(n - 1);   // recursive case

}
} int factorial(int n) { // 2

if (n <= 1) {                      // base case
return 1;

} else {
return n * factorial(n - 1);   // recursive case

}
} int factorial(int n) { // 1

if (n <= 1) {                      // base case
return 1;

} else {
return n * factorial(n - 1);   // recursive case

}
}
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Recursion and cases
• Every recursive algorithm involves at least 2 cases:

– base case: A simple occurrence that can be answered directly
– recursive case: A more complex occurrence of the problem that 

cannot be directly answered, but can instead be described in terms of 
smaller occurrences of the same problem

– Key idea: In a recursive piece of code, you handle a small part of the 
overall task yourself (usually the work involves modifying the results of 
the smaller problems), then make a recursive call to handle the rest.

– Ask yourself, "How is this task self-similar?"
• "How can I describe this algorithm in terms of a

smaller or simpler version of itself?"
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Three Rules of Recursion
• Every (valid) input must have a case (either recursive or 

base)
• There must be a base case that makes no recursive calls
• The recursive case must make the problem simpler and 

make forward progress to the base case
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Recursive tracing
• Consider the following recursive function:

int mystery(int n) {
if (n < 10) {

return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
}

Q: What is the result of:    mystery(648) ?
A.  8 B.  9 C.  54 D.  72 E. 648
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Recursive stack trace

int mystery(int n) {            // n = 648
if (n < 10) {

return n;
} else {

int a = n / 10;         // a = 64
int b = n % 10;         // b =   8
return mystery(a + b);  // mystery(72);

}
}

int mystery(int n) {            // n = 72
if (n < 10) {

return n;
} else {

int a = n / 10;         // a = 7
int b = n % 10;         // b =  2
return mystery(a + b);  // mystery(9);

}
}

int mystery(int n) {            // n = 9
if (n < 10) {

return n;               // return 9
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);                 

}
}
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isPalindrome exercise
• Write a recursive function isPalindrome that accepts a string

and returns true if it reads the same forwards as backwards.

isPalindrome("madam") ® true
isPalindrome("racecar") ® true
isPalindrome("step on no pets") ® true
isPalindrome("able was I ere I saw elba") ® true
isPalindrome("Q") ® true
isPalindrome("Java") ® false
isPalindrome("rotater") ® false
isPalindrome("byebye") ® false
isPalindrome("notion") ® false

– What is a good base case?
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isPalindrome
• What is our stopping point (base case)?
• How is this problem self-similar?
• What is the minimum amount of work?
• How can we make the problem simpler by doing the least amount 

of work?
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isPalindrome
• What is our stopping point (base case)?

– Empty string or string of length 1
• How is this problem self-similar?

– Palindromes can be written as: x[SMALLER_PALINDROME]x, where x 
stands for some letter

• What is the minimum amount of work?
– Testing the equality of outside characters

• How can we make the problem simpler by doing the least amount 
of work?
– Peel off the outside characters and test if the middle is a palindrome
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isPalindrome solution
// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
bool isPalindrome(string s) {

if (s.length() < 2) {   // base case
return true;

} else {                // recursive case
if (s[0] != s[s.length() - 1]) {

return false;
}
string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

}
}
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Announcements
• Homework 2 due on Wednesday at 5PM
• Homework 1 grades will be released by your section leader on or 

before Wednesday
• Alternate midterms are being scheduled this week. Keep an eye out 

for an email from Kate
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Multiple calls tracing
int mystery(int n) {

if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

Q: What is the result of:  mystery(348) ?
A. 3828 B. 348348 C. 334488 D. 80403         E. none
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Multiple calls tracing
// call 1:    348
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}// call 2a:    34

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

// call 2b:     8
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}// call 3a:     3

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

// call 3b:     4
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}
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Recursive Big O
• Below is the "pseudocode" for finding Big O of a function

– Note that this is not real code; this is to show the recursive nature of 
finding Big O

– Self-similarity: find Big O of smaller code blocks and combine them
– This Big O pseudocode doesn't cover function calls and some other cases 

(for pedagogical purposes) 

findBigO(codeSnippet):
if codeSnippet is a single statement:

return O(1)
if codeSnippet is loop:

return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(1)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(1) O(1)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2) O(1)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)       +

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)       +

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2) O(1)
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Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

final result: O(N2)
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power exercise
• Write a function power that accepts integer parameters for a base 

and exponent and computes base ^ exponent.

– Write a recursive version of this function (one that calls itself).
– Solve the problem without using any loops.

– What is our stopping point (base case)?
– How is this problem self-similar?
– What is the minimum amount of work?
– How can we make the problem simpler by doing the least amount of 

work?
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Initial solution
// Returns base ^ exp.
// Assumes exp >= 1.
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}
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The call stack
• Each previous call waits for the next call to finish.

– cout << power(5, 3) << endl;

// first call:   5        3
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}

// second call:  5        2
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}

// third call:   5        1
int power(int base, int exp) {

if (exp == 1) {
return base;   // 5

} else {
return base * power(base, exp - 1);

}
}
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"Recursion Zen"
• The real, even simpler, base case is an exp of 0, not 1:

int power(int base, int exp) {
if (exp == 0) {

// base case; base^0 = 1
return 1;

} else {
// recursive case:  x^y = x * x^(y-1)
return base * power(base, exp - 1);

}
}

– Recursion Zen: The art of properly identifying the best set of cases for 
a recursive algorithm and expressing them elegantly.
Opposite is arms-length recursion

(our informal term)
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Preconditions
• precondition: Something your code assumes is true when called.

– Often documented as a comment on the function's header:

// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {

– Stating a precondition doesn't really "solve" the problem, but it at least 
documents our decision and warns the client what not to do.

– What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?
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Throwing exceptions
error(expression);

– In Stanford C++ lib's "error.h"
– Generates an exception that will crash the program,

unless it has code to handle ("catch") the exception.
– alternative: throw something

• something can be an int, a string, etc.

• Why would anyone ever want  a program to crash?
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power solution 2
// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {

if (exp < 0) {
throw "illegal negative exponent";

} else ...
...

}


