
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, and others.

CS 106B, Lecture 8
Recursion

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• Learn a powerful algorithmic technique called recursion

– Exploit self-similarity in problems

• We will spend several days on recursion – don't worry if it doesn't
make sense today
– Goal: do as many examples as we can
– You should practice: CodeStepByStep, section problems, or examples

from the textbook
– Highly encourage the reading for this week!

http://codestepbystep.com/

3

Recursion
• recursion: Function that calls itself

– Solving a problem using recursion depends on solving
smaller (simpler) occurrences of the same problem until the problem is
simple enough that you can solve it directly

– Key question: "How is this problem self-similar?" – what are the
smaller subproblems that make up the bigger problem?

• Occurs in many places in code and in real world:
– Looking up a word in dictionary may involve looking up other words
– Nested structures (trees, file folders, collections) can be self-similar

4

Recursive Programming
• recursive programming: Writing functions that call themselves to

solve problems that are recursive in nature.

– An equally powerful substitute for iteration (loops)

– Particularly well-suited to solving certain types of problems

– Leads to elegant, simplistic, short code (when used well)

– A key component of many of our assignments in this course

5

Non-recursive factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 1.
int factorial(int n) {

int total = 1;
for (int i = 1; i <= n; i++) {

total *= i;
}
return total;

}

• Important observations:
0! = 1! = 1
4! = 4 * 3 * 2 * 1
5! = 5 * 4 * 3 * 2 * 1

= 5 * 4!

6

Recursive factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 0.
int factorial(int n) {

if (n <= 1) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

• The recursive code handles a small part of the overall task
(multiplying by n), then makes a recursive call to handle the rest.
– The recursive version is written without using any loops.

• Recursion replaces the loop
– We separate the code into a base case (a simple case that does not

make any recursive calls), and a recursive case.

7

Recursive stack trace
int factorial(int n) { // 4

if (n <= 1) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
} int factorial(int n) { // 3

if (n <= 1) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
} int factorial(int n) { // 2

if (n <= 1) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
} int factorial(int n) { // 1

if (n <= 1) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

8

Recursion and cases
• Every recursive algorithm involves at least 2 cases:

– base case: A simple occurrence that can be answered directly
– recursive case: A more complex occurrence of the problem that

cannot be directly answered, but can instead be described in terms of
smaller occurrences of the same problem

– Key idea: In a recursive piece of code, you handle a small part of the
overall task yourself (usually the work involves modifying the results of
the smaller problems), then make a recursive call to handle the rest.

– Ask yourself, "How is this task self-similar?"
• "How can I describe this algorithm in terms of a

smaller or simpler version of itself?"

9

Three Rules of Recursion
• Every (valid) input must have a case (either recursive or

base)
• There must be a base case that makes no recursive calls
• The recursive case must make the problem simpler and

make forward progress to the base case

10

Recursive tracing
• Consider the following recursive function:

int mystery(int n) {
if (n < 10) {

return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
}

Q: What is the result of: mystery(648) ?
A. 8 B. 9 C. 54 D. 72 E. 648

11

Recursive stack trace

int mystery(int n) { // n = 648
if (n < 10) {

return n;
} else {

int a = n / 10; // a = 64
int b = n % 10; // b = 8
return mystery(a + b); // mystery(72);

}
}

int mystery(int n) { // n = 72
if (n < 10) {

return n;
} else {

int a = n / 10; // a = 7
int b = n % 10; // b = 2
return mystery(a + b); // mystery(9);

}
}

int mystery(int n) { // n = 9
if (n < 10) {

return n; // return 9
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
}

12

isPalindrome exercise
• Write a recursive function isPalindrome that accepts a string

and returns true if it reads the same forwards as backwards.

isPalindrome("madam") ® true
isPalindrome("racecar") ® true
isPalindrome("step on no pets") ® true
isPalindrome("able was I ere I saw elba") ® true
isPalindrome("Q") ® true
isPalindrome("Java") ® false
isPalindrome("rotater") ® false
isPalindrome("byebye") ® false
isPalindrome("notion") ® false

– What is a good base case?

13

isPalindrome
• What is our stopping point (base case)?
• How is this problem self-similar?
• What is the minimum amount of work?
• How can we make the problem simpler by doing the least amount

of work?

14

isPalindrome
• What is our stopping point (base case)?

– Empty string or string of length 1
• How is this problem self-similar?

– Palindromes can be written as: x[SMALLER_PALINDROME]x, where x
stands for some letter

• What is the minimum amount of work?
– Testing the equality of outside characters

• How can we make the problem simpler by doing the least amount
of work?
– Peel off the outside characters and test if the middle is a palindrome

15

isPalindrome solution
// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
bool isPalindrome(string s) {

if (s.length() < 2) { // base case
return true;

} else { // recursive case
if (s[0] != s[s.length() - 1]) {

return false;
}
string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

}
}

16

Announcements
• Homework 2 due on Wednesday at 5PM
• Homework 1 grades will be released by your section leader on or

before Wednesday
• Alternate midterms are being scheduled this week. Keep an eye out

for an email from Kate

17

Multiple calls tracing
int mystery(int n) {

if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

Q: What is the result of: mystery(348) ?
A. 3828 B. 348348 C. 334488 D. 80403 E. none

18

Multiple calls tracing
// call 1: 348
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}// call 2a: 34

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

// call 2b: 8
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}// call 3a: 3

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

// call 3b: 4
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;

} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

19

Recursive Big O
• Below is the "pseudocode" for finding Big O of a function

– Note that this is not real code; this is to show the recursive nature of
finding Big O

– Self-similarity: find Big O of smaller code blocks and combine them
– This Big O pseudocode doesn't cover function calls and some other cases

(for pedagogical purposes)

findBigO(codeSnippet):
if codeSnippet is a single statement:

return O(1)
if codeSnippet is loop:

return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)

20

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

21

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

22

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2)

23

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(1)

24

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

25

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(1) O(1)

26

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2) O(1)

27

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock) +

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2)

28

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

29

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock) +

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

O(N2) O(1)

30

Finding Big O Recursively
findBigO(codeSnippet):

if codeSnippet is a single statement:
return O(1)

if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int i = 0; i < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: " << i + j << endl;
}

}

cout << "Have a nice Life!" << endl;

final result: O(N2)

31

power exercise
• Write a function power that accepts integer parameters for a base

and exponent and computes base ^ exponent.

– Write a recursive version of this function (one that calls itself).
– Solve the problem without using any loops.

– What is our stopping point (base case)?
– How is this problem self-similar?
– What is the minimum amount of work?
– How can we make the problem simpler by doing the least amount of

work?

32

Initial solution
// Returns base ^ exp.
// Assumes exp >= 1.
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}

33

The call stack
• Each previous call waits for the next call to finish.

– cout << power(5, 3) << endl;

// first call: 5 3
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}

// second call: 5 2
int power(int base, int exp) {

if (exp == 1) {
return base;

} else {
return base * power(base, exp - 1);

}
}

// third call: 5 1
int power(int base, int exp) {

if (exp == 1) {
return base; // 5

} else {
return base * power(base, exp - 1);

}
}

34

"Recursion Zen"
• The real, even simpler, base case is an exp of 0, not 1:

int power(int base, int exp) {
if (exp == 0) {

// base case; base^0 = 1
return 1;

} else {
// recursive case: x^y = x * x^(y-1)
return base * power(base, exp - 1);

}
}

– Recursion Zen: The art of properly identifying the best set of cases for
a recursive algorithm and expressing them elegantly.
Opposite is arms-length recursion

(our informal term)

35

Preconditions
• precondition: Something your code assumes is true when called.

– Often documented as a comment on the function's header:

// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {

– Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

– What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?

36

Throwing exceptions
error(expression);

– In Stanford C++ lib's "error.h"
– Generates an exception that will crash the program,

unless it has code to handle ("catch") the exception.
– alternative: throw something

• something can be an int, a string, etc.

• Why would anyone ever want a program to crash?

37

power solution 2
// Returns base ^ exp.
// Precondition: exp >= 0
int power(int base, int exp) {

if (exp < 0) {
throw "illegal negative exponent";

} else ...
...

}

