
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106B, Lecture 9
Recursive Data

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

2

Plan for Today
• More recursion practice!
• Learning goals for today

– See examples of recursively structured data.

3

Recap: Recursion Tips
• Look for self-similarity
• Make the problem simpler by doing the least amount of work

possible
• Trust the recursion
• Find a stopping point (base case)

4

reverseLines exercise
• Write a recursive function reverseLines that accepts a file input

stream and prints the lines of that file in reverse order.

– Example input file: Expected console output:

Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,

5

Reversal pseudocode
• Reversing the lines of a file:

– Read a line L from the file.
– Print the rest of the lines in reverse order.
– Print the line L.

• If only we had a way to reverse the rest of the lines of the file....

6

reverseLines solution
void reverseLines(ifstream& input) {

string line;
if (getline(input, line)) {

// recursive case
reverseLines(input);
cout << line << endl;

}
}

– Where is the base case?

7

Stanford C++ files
#include "filelib.h"

Function Description

createDirectory(name) creates a a new directory with given path name

deleteFile(name) removes file from disk

fileExists(name) whether this file exists on the disk

getCurrentDirectory() returns directory the current C++ program runs in

getExtension(name) returns file's extension, e.g. "foo.cpp"® ".cpp"

getHead(name),
getTail(name)

separate a file path into the directory and file part;
for "a/b/c/d.txt", head is "a/b/c", tail is "d.txt"

isDirectory(name) returns whether this file name represents a directory

isFile(name) returns whether this file name represents a regular file

listDirectory(name) returns a Vector<string> with the names of all files
contained in the given directory

readEntireFile(name, v) reads lines of the given file into a vector of strings

renameFile(old, new) changes a file's name

8

crawl exercise
• Write a function crawl accepts a file name as a parameter and

prints information about that file.
– If the name represents a normal file, just print its name.
– If the name represents a directory, print its name and information

about every file/directory inside it, indented.

course
handouts

syllabus.doc
lecture-schedule.xls

homework
1-gameoflife

life.cpp
life.h
GameOfLife.pro

– recursive data: A directory can contain other directories.

9

Optional parameters
• We cannot vary the indentation without an extra parameter:

void crawl(string filename, string indent) {

• Often the parameters we need for our recursion do not match
those the client will want to pass.

One solution is to use a default parameter value:

void crawl(string filename, string indent = "");

– The client can call crawl passing only one parameter.
– The recursive calls can pass the second parameter to indent.

10

crawl solution
// Prints information about this file,
// and (if it is a directory) any files inside it.
void crawl(string filename, string indent = "") {

cout << indent << getTail(filename) << endl;
if (isDirectory(filename)) {

// recursive case; print contained files/dirs
Vector<string> filelist;
listDirectory(filename, filelist);
for (string subfile : filelist) {

crawl(filename + "/" + subfile,
indent + " ");

}
}

}

11

Announcements
• My OH tomorrow are cancelled L

– Come by today for OH!
– LaIR is still open tonight and tomorrow
– Can also post on Piazza for help

• HW2 is due tomorrow at 5PM

12

Towers of Hanoi
• The Towers of Hanoi puzzle asks a player to move a stack of discs

from one peg to another, moving one disc at a time.
– A disc cannot sit on top of a smaller disc.

• Write a recursive function moveDiscs with three parameters:
number of discs, start peg, end peg, that moves that many discs
from the start peg to the end peg.

13

Towers of Hanoi
• Assume we have a HanoiGui with the following functions:

void initialize(int numDiscs)
void moveOneDisc(int startPeg, int endPeg)
int thirdPegNumber(int peg1, int peg2)

14

Hanoi solution
// Moves the given number of discs from the given
// starting peg to the given ending peg.
void moveDiscs(int numDiscs, int startPeg, int endPeg) {
if (numDiscs > 0) {

// move rest of discs
int thirdPeg = HanoiGui::thirdPegNumber(startPeg,

endPeg);
moveDiscs(numDiscs - 1, startPeg, thirdPeg);
// move remaining bottom disc
HanoiGui::moveOneDisc(startPeg, endPeg);
// move rest of discs
moveDiscs(numDiscs - 1, thirdPeg, endPeg);

}
// else, implicit base case: do nothing

}

15

evenDigits exercise
• Write a recursive function evenDigits that accepts an integer and

returns a new number containing only the even digits, in the same
order. If there are no even digits, return 0.

– Example: evenDigits(8342116) returns 8426
– Example: evenDigits(40109) returns 400
– Example: evenDigits(8) returns 8
– Example: evenDigits(-163505) returns -60
– Example: evenDigits(35179) returns 0

16

evenDigits solution
// Returns a new integer containing only the even-valued
// digits from the given integer, in the same order.
// Returns 0 if there are no even digits.
int evenDigits(int n) {

if (n < 0) {
return -evenDigits(-n);

} else if (n == 0) {
return 0;

} else if (n % 2 == 0) {
return 10 * evenDigits(n / 10) + n % 10;

} else {
return evenDigits(n / 10);

}
}

