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Plan for Today
• More recursion practice!
• Learning goals for today

– See examples of recursively structured data.
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Recap: Recursion Tips
• Look for self-similarity
• Make the problem simpler by doing the least amount of work 

possible
• Trust the recursion 
• Find a stopping point (base case)
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reverseLines exercise
• Write a recursive function reverseLines that accepts a file input 

stream and prints the lines of that file in reverse order.

– Example input file: Expected console output:

Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,
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Reversal pseudocode
• Reversing the lines of a file:

– Read a line L from the file.
– Print the rest of the lines in reverse order.
– Print the line L.

• If only we had a way to reverse the rest of the lines of the file....
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reverseLines solution
void reverseLines(ifstream& input) {

string line;
if (getline(input, line)) {

// recursive case
reverseLines(input);
cout << line << endl;

}
}

– Where is the base case?
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Stanford C++ files
#include "filelib.h"

Function Description

createDirectory(name) creates a a new directory with given path name

deleteFile(name) removes file from disk

fileExists(name) whether this file exists on the disk

getCurrentDirectory() returns directory the current C++ program runs in

getExtension(name) returns file's extension, e.g. "foo.cpp"® ".cpp"

getHead(name),
getTail(name)

separate a file path into the directory and file part;
for "a/b/c/d.txt", head is "a/b/c", tail is "d.txt"

isDirectory(name) returns whether this file name represents a directory

isFile(name) returns whether this file name represents a regular file

listDirectory(name) returns a Vector<string> with the names of all files 
contained in the given directory

readEntireFile(name, v) reads lines of the given file into a vector of strings

renameFile(old, new) changes a file's name
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crawl exercise
• Write a function crawl accepts a file name as a parameter and 

prints information about that file.
– If the name represents a normal file, just print its name.
– If the name represents a directory, print its name and information 

about every file/directory inside it, indented.

course
handouts

syllabus.doc
lecture-schedule.xls

homework
1-gameoflife

life.cpp
life.h
GameOfLife.pro

– recursive data: A directory can contain other directories.
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Optional parameters
• We cannot vary the indentation without an extra parameter:

void crawl(string filename, string indent) {

• Often the parameters we need for our recursion do not match 
those the client will want to pass.

One solution is to use a default parameter value:

void crawl(string filename, string indent = "");

– The client can call crawl passing only one parameter.
– The recursive calls can pass the second parameter to indent.
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crawl solution
// Prints information about this file,
// and (if it is a directory) any files inside it.
void crawl(string filename, string indent = "") {

cout << indent << getTail(filename) << endl;
if (isDirectory(filename)) {

// recursive case; print contained files/dirs
Vector<string> filelist;
listDirectory(filename, filelist);
for (string subfile : filelist) {

crawl(filename + "/" + subfile,
indent + "    ");

}
}

}
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Announcements
• My OH tomorrow are cancelled L

– Come by today for OH!
– LaIR is still open tonight and tomorrow
– Can also post on Piazza for help

• HW2 is due tomorrow at 5PM
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Towers of Hanoi
• The Towers of Hanoi puzzle asks a player to move a stack of discs 

from one peg to another, moving one disc at a time.
– A disc cannot sit on top of a smaller disc.

• Write a recursive function moveDiscs with three parameters: 
number of discs, start peg, end peg, that moves that many discs 
from the start peg to the end peg.
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Towers of Hanoi
• Assume we have a HanoiGui with the following functions:

void initialize(int numDiscs)
void moveOneDisc(int startPeg, int endPeg)
int thirdPegNumber(int peg1, int peg2)
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Hanoi solution
// Moves the given number of discs from the given
// starting peg to the given ending peg.
void moveDiscs(int numDiscs, int startPeg, int endPeg) {
if (numDiscs > 0) {

// move rest of discs
int thirdPeg = HanoiGui::thirdPegNumber(startPeg, 

endPeg);
moveDiscs(numDiscs - 1, startPeg, thirdPeg);
// move remaining bottom disc
HanoiGui::moveOneDisc(startPeg, endPeg);
// move rest of discs
moveDiscs(numDiscs - 1, thirdPeg, endPeg);

}
// else, implicit base case: do nothing

}
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evenDigits exercise
• Write a recursive function evenDigits that accepts an integer and 

returns a new number containing only the even digits, in the same 
order.  If there are no even digits, return 0.

– Example: evenDigits(8342116)  returns 8426
– Example: evenDigits(40109) returns 400
– Example: evenDigits(8) returns 8
– Example: evenDigits(-163505) returns -60
– Example: evenDigits(35179) returns 0
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evenDigits solution
// Returns a new integer containing only the even-valued
// digits from the given integer, in the same order.
// Returns 0 if there are no even digits.
int evenDigits(int n) {

if (n < 0) {
return -evenDigits(-n);

} else if (n == 0) {
return 0;

} else if (n % 2 == 0) {
return 10 * evenDigits(n / 10) + n % 10;

} else {
return evenDigits(n / 10);

}
}


