

Thinking Recursively
Part II

Outline for Today

● Recap from Last Time
● Where are we, again?

● Wrapper Functions
● Cleaning up some code.

● Enumerating Subsets
● A classic combinatorial problem.

● Decision Trees
● Generating all solutions to a problem.

Recap from Last Time

We drew this

tree recursively

We drew this
tree recursively

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

New Stuff!

Cleaning Up our Code

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… in this
window …

… in this
window …

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… at this
position …

… at this
position …

… in this
window …

… in this
window …

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… at this
position …

… at this
position …

… that’s this
big …

… that’s this
big …

… in this
window …

… in this
window …

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… at this
position …

… at this
position …

… that’s this
big …

… that’s this
big …

… facing
this way …

… facing
this way …

… in this
window …

… in this
window …

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… at this
position …

… at this
position …

… that’s this
big …

… that’s this
big …

… facing
this way …

… facing
this way …

… with this
order …

… with this
order …

… in this
window …

… in this
window …

int drawTree(GWindow& window,
 double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

Draw me
a tree…

… at this
position …

… at this
position …

… that’s this
big …

… that’s this
big …

… facing
this way …

… facing
this way …

… with this
order …

… with this
order …

… then tell
me how

many lines
you drew.

… then tell
me how

many lines
you drew.

… in this
window …

… in this
window …

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

I certainly must tell you
where the tree goes and

how big it is!

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

Tell you parameters like
the Order and Initial Angle?

Most unorthodox!

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 int numLinesDrawn = drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

This is more acceptable
in polite company!

Wrapper Functions

● Some recursive functions
need extra arguments as
part of an
implementation detail.
● In our case, the order and

angle of the tree is not
something we want to
expose.

● A wrapper function is a
function that does some
initial prep work, then
fires off a recursive call
with the right arguments.

Caller

Recursive Function

Wrapper Function

Recursive Enumeration

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Google)

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Google)

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 ✓ ×

… … … …

 ✓ ✓ × ×

This structure is called a decision tree.

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

We’ll process
these trees
recursively.

We’ll process
these trees
recursively.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

List all subsets of
{A, H, I}

List all subsets of
{A, H, I} A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

{A, H} {A} {H} { }

{A} { }

{ }

{H, I}

At each step, we need to know

 1. what elements we haven’t
considered yet, and

 2. what we’ve already chosen
to put in our set.

At each step, we need to know

 1. what elements we haven’t
considered yet, and

 2. what we’ve already chosen
to put in our set.

List all subsets of
{A, H, I}

List all subsets of
{A, H, I} A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

{A, H} {A} {H} { }

{A} { }

{ }

{H, I}

Base case: If all
decisions have already
been made, print out

the result of those
choices.

Base case: If all
decisions have already
been made, print out

the result of those
choices.

{H, I}

List all subsets of
{A, H, I}

List all subsets of
{A, H, I} A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

{A, H} {A} {H} { }

{A}

{ }

Recursive case: Pick
some element we

haven’t decided about
yet. Try all possible

choices for what to do
next.

Recursive case: Pick
some element we

haven’t decided about
yet. Try all possible

choices for what to do
next.

H?

 × ✓
{ }

{H, I}

List all subsets of
{A, H, I}

List all subsets of
{A, H, I} A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

{A, H} {A} {H} { }

{A}

{ }

H?

 × ✓
{ }

void listSubsetsRec(const HashSet<int>& elems,
 const HashSet<int>& chosen) {

 if (elems.isEmpty()) {
 cout << chosen << endl;
 } else {
 int elem = elems.first();
 HashSet<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 HashSet<int> includingElem = chosen + elem;
 listSubsetsRec(remaining, includingElem);

 /* Option 2: Exclude this element. */
 HashSet<int> excludingElem = chosen;
 listSubsetsRec(remaining, excludingElem);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void listSubsetsRec(const HashSet<int>& elems,
 const HashSet<int>& chosen) {

 if (elems.isEmpty()) {
 cout << chosen << endl;
 } else {
 int elem = elems.first();
 HashSet<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 HashSet<int> includingElem = chosen + elem;
 listSubsetsRec(remaining, includingElem);

 /* Option 2: Exclude this element. */
 HashSet<int> excludingElem = chosen;
 listSubsetsRec(remaining, excludingElem);
 }
}

void listSubsetsRec(const HashSet<int>& elems,
 const HashSet<int>& chosen) {

 if (elems.isEmpty()) {
 cout << chosen << endl;
 } else {
 int elem = elems.first();
 HashSet<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 listSubsetsRec(remaining, chosen + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining, chosen);
 }
}

Time-Out for Announcements!

Assignment 3

● Assignment 3 (Recursion!) goes out today. It’s due, as
usual, next Friday at the start of class.

● You are welcome to work in pairs on this assignment. As a
reminder:
● You can only partner with someone who is in your discussion

section.
● You are strongly encouraged to physically sit at the same

computer and work on the assignment at the same time,
bouncing ideas off each other.

● You are strongly discouraged from splitting the work in half
and rejoining at the end. This is an extremely bad idea.

● Assignment 2 was due at the start of class today. Feel free
to use a late period to extend the deadline to Monday if
you need more time.

(The Curtain Rises for Act II)

Making Every Subset

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

void listSubsetsOf(const HashSet<int>& elems);

Right now, these get printed to the
console.

What if we want this function to hand
back a list of all the subsets?

Right now, these get printed to the
console.

What if we want this function to hand
back a list of all the subsets?

HashSet<string> subsetsOf(const string& text);

subsetsOf("code") should return a set
containing these strings:

"", "c", "o", "co", "d",
"cd", "od", "cod", "e", "ce",
"oe", "coe", "de", "cde",

"ode", "code"

subsetsOf("code") should return a set
containing these strings:

"", "c", "o", "co", "d",
"cd", "od", "cod", "e", "ce",
"oe", "coe", "de", "cde",

"ode", "code"

A?

I?

"AHI" "AH" "AI" "A" "HI" "H" "I" ""

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

Make all subsets of
"AHI"

Make all subsets of
"AHI"

"AH" "A" "H" ""

"A" ""

""

A?

I?

"AHI" "AH" "AI" "A" "HI" "H" "I" ""

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

Make all subsets of
"AHI"

Make all subsets of
"AHI"

"AH" "A" "H" ""

"A" ""

""

At each step, we need to know

 1. what characters we haven’t
considered yet, and

 2. what we’ve already chosen
to put in our string.

At each step, we need to know

 1. what characters we haven’t
considered yet, and

 2. what we’ve already chosen
to put in our string.

A?

I?

"AHI" "AH" "AI" "A" "H" "I" ""

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

Make all subsets of
"AHI"

Make all subsets of
"AHI"

"AH" "A" "H" ""

"A" ""

""

Base case: If there
are no decisions left,

there is only one
string we can make.

Base case: If there
are no decisions left,

there is only one
string we can make.

"HI"

We’re returning a
HashSet of all possible

options, so we’ll
return {"HI"}.

We’re returning a
HashSet of all possible

options, so we’ll
return {"HI"}.

"HI"

A?

I?

"AHI" "AH" "AI" "A" "H" "I" ""

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

Make all subsets of
"AHI"

Make all subsets of
"AHI"

"AH" "A" "H" ""

"A"

""

H?

 × ✓
""

Recursive case: We
either include the first

character, or we
exclude the first

character. Try both
options.

Recursive case: We
either include the first

character, or we
exclude the first

character. Try both
options.

Each option produces
a set of possible

strings. We’ll combine
those sets together to

form the overall
result.

Each option produces
a set of possible

strings. We’ll combine
those sets together to

form the overall
result.

"HI"

A?

I?

"AHI" "AH" "AI" "A" "H" "I" ""

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

Make all subsets of
"AHI"

Make all subsets of
"AHI"

"AH" "A" "H" ""

"A"

""

H?

 × ✓
""

HashSet<string> subsetsRec(const string& str,
 const string& chosen) {

 if (str == "") {
 return { chosen };
 } else {
 char ch = str[0];
 string remaining = str.substr(1);

 /* Option 1: Include this character. */
 string includingCh = chosen + ch;
 HashSet<string> with = subsetsRec(remaining, includingCh);

 /* Option 2: Exclude this character. */
 string excludingCh = chosen;
 HashSet<string> without = subsetsRec(remaining, excludingCh);

 return with + without;
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

HashSet<string> subsetsRec(const string& str,
 const string& chosen) {

 if (str == "") {
 return { chosen };
 } else {
 char ch = str[0];
 string remaining = str.substr(1);

 /* Option 1: Include this character. */
 string includingCh = chosen + ch;
 HashSet<string> with = subsetsRec(remaining, includingCh);

 /* Option 2: Exclude this character. */
 string excludingCh = chosen;
 HashSet<string> without = subsetsRec(remaining, excludingCh);

 return with + without;
 }
}

HashSet<string> subsetsRec(const string& str,
 const string& chosen) {

 if (str == "") {
 return { chosen };
 } else {
 string remaining = str.substr(1);

 /* Either include the first character, or don't. */
 return subsetsRec(remaining, chosen + str[0]) +
 subsetsRec(remaining, chosen);

 }
}

Your Action Items

● Read Chapter 8.
● There’s a lot of great information there

about recursive problem-solving, and it’s a
great resource.

● Start Assignment 3.
● Aim to complete the Sierpinski Triangle and

Human Pyramids, and try starting What Are
YOU Doing?

Next Time

● Iteration + Recursion
● Combining two techniques together.

● Enumerating Permutations
● What order should we do these tasks in?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

