

Thinking Recursively
Part III

Outline for Today

● Recap from Last Time
● Where are we, again?

● Iteration + Recursion
● Combining two techniques together.

● Enumerating Permutations
● What order should we do things?

● Enumeration, Generally
● How to think about enumeration problems.

Recap from Last Time

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

This is called a
decision tree.

This is called a
decision tree.

void listSubsetsRec(const HashSet<int>& elems,
 const HashSet<int>& chosen) {

 if (elems.isEmpty()) {
 cout << chosen << endl;
 } else {
 int elem = elems.first();
 HashSet<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 listSubsetsRec(remaining, chosen + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining, chosen);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

HashSet<string> subsetsRec(const string& str,
 const string& chosen) {

 if (str == "") {
 return { chosen };
 } else {
 string remaining = str.substr(1);

 /* Either include the first character, or don't. */
 return subsetsRec(remaining, chosen + str[0]) +
 subsetsRec(remaining, chosen);

 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

New Stuff!

More On Self-Similarity

This self-similar
shape is called a

Sierpinski
carpet.

This self-similar
shape is called a

Sierpinski
carpet.

An order-0
Sierpinski carpet
is a filled square.

An order-0
Sierpinski carpet
is a filled square.

Otherwise, a
Sierpinski carpet is

eight smaller carpets
arranged in this grid

pattern.

Otherwise, a
Sierpinski carpet is

eight smaller carpets
arranged in this grid

pattern.

(0, 1) (0, 2)(0, 0)

(1, 2)(1, 0)

(2, 1) (2, 2)(2, 0)

(1, 0)

Label each square
with its (row, col).

Label each square
with its (row, col).

(0, 1) (0, 2)(0, 0)

(1, 2)(1, 0)

(2, 1) (2, 2)(2, 0)

(1, 0)

We can visit each
spot with a double

for loop.

We can visit each
spot with a double

for loop.

Iteration + Recursion

● It’s completely reasonable to mix iteration
and recursion in the same function.

● Here, we’re firing off eight recursive calls,
and the easiest way to do that is with a
double for loop.

● Recursion doesn’t mean “the absence of
iteration.” It just means “solving a
problem by solving smaller copies of that
same problem.”

(And, just for fun…)

Image Credit

https://upload.wikimedia.org/wikipedia/commons/5/52/Menger-Schwamm-farbig.png

Enumerating Permutations

Permutations

● A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Each decision is of
the form “do I pick

this element?”

Each decision is of
the form “do I pick

this element?”

List all permutations of
{A, H, I}

List all permutations of
{A, H, I}

Each decision is of
the form “what do I

pick next?”

Each decision is of
the form “what do I

pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

void listPermutationsRec(const string& str,
 const string& chosen) {

 if (str == "") {
 cout << chosen << endl;
 } else {
 /* Try all options of what’s next. */
 for (int i = 0; i < str.size(); i++) {
 char ch = str[i];
 string remaining = str.substr(0, i) +
 str.substr(i + 1);
 listPermutationsRec(remaining, chosen + ch);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void listSubsetsRec(const HashSet<int>& elems,
 const HashSet<int>& chosen) {

 if (elems.isEmpty()) {
 cout << chosen << endl;
 } else {
 int elem = elems.first();
 HashSet<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 listSubsetsRec(remaining, chosen + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining, chosen);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 process decisions made;
 } else {
 for (each possible next choice) {
 exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 }
}

void exploreAllTheThings(initial state) {
 exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

Your Action Items

● Read Chapter 8
● There are so many goodies there, and it’s a great

way to complement what we’re discussing here.
● Work on Assignment 3

● If you’re following our recommended timetable,
you should have completed the Sierpinski
Triangle and Human Pyramids and have started
on What Are YOU Doing?

● Aim to complete What Are YOU Doing? and to
start Shift Scheduling by next time.

Next Time

● Enumerating Combinations
● Can you build the Dream Team?

● Recursive Backtracking
● Finding a needle in a haystack.

● The Great Shrinkable Word Problem
● A fun language exercise with a cute

backstory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

