

Thinking Recursively
Part IV

Outline for Today

● Recap From Last Time
● Where are we, again?

● Enumerating Combinations
● Addressing some points from last time.

● Shrinkable Words
● A little word puzzle!

Recap from Last Time

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Each decision is of
the form “do I pick

this element?”

Each decision is of
the form “do I pick

this element?”

List all permutations of
{A, H, I}

List all permutations of
{A, H, I}

Each decision is of
the form “what do I

pick next?”

Each decision is of
the form “what do I

pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

void exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 process decisions made;
 } else {
 for (each possible next choice) {
 exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 }
}

void exploreAllTheThings(initial state) {
 exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

New Stuff!

Enumerating Combinations

You need at least five US Supreme
Court justices to agree to set a

precedent.

What are all the ways you can pick five
justices off the US Supreme Court?

You need at least five US Supreme
Court justices to agree to set a

precedent.

What are all the ways you can pick five
justices off the US Supreme Court?

Generating Combinations

● Suppose that we want to find every way to choose exactly one
element from a set.

● We could do something like this:

for (int x: mySet) {

 cout << x << endl;

}

Generating Combinations

● Suppose that we want to find every way to choose exactly two
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 if (x != y) {

 cout << x << ", " << y << endl;

 }

 }

}

Generating Combinations

● Suppose that we want to find every way to choose exactly three
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 for (int z: mySet) {

 if (x != y && x != z && y != z) {

 cout << x << ", " << y << ", " << z << endl;

 }

 }

 }

}

Generating Combinations

● If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a

large number and we don’t want to type
until our fingers bleed?

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.
Option 1:

Exclude this
person.

Option 1:
Exclude this

person.

Generating Combinations

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

One way to choose
5 elements out of 9
is to include the first
element, then choose
4 elements out of
the remaining 8.

One way to choose
5 elements out of 9
is to include the first
element, then choose
4 elements out of
the remaining 8.

Option 2:
Include this

person.

Option 2:
Include this

person.

Our Return Type

● Each combination of k strings can be
represented as a HashSet<string>.

● We want to return a container holding all
possible combinations. That would be a

HashSet<HashSet<string>>.
● It’s not that unusual to see containers

nested this way!

Our Base Case

Pick 0 more Justices out of
{Kagan, Breyer}

Chosen so far:
{Ginsburg, Roberts, Gorsuch,

 Thomas, Sotomayor}

There’s no need to
keep looking.

What should we
return in this case?

There’s no need to
keep looking.

What should we
return in this case?

Our Base Case, Part II

Pick 5 more Justices out of
{Sotomayor, Thomas}

Chosen so far: { }

There is no way
to do this!

What should we
return in this

case?

There is no way
to do this!

What should we
return in this

case?

Getting a Majority

Pick 4 Justices out of
{ Breyer, …, Roberts }

Chosen so far: { Kagan }

Pick 5 Justices out of
{ Breyer, …, Roberts }

Chosen so far: { }

Pick 5 Justices out of
{Kagan, Breyer, …, Roberts}

Chosen so far: { }

Include
Elena Kagan

 Exclude
 Elena Kagan

The Wonderful auto Keyword

● There are many cases in which there is
exactly one possible type that a variable
could have.

● In that case, rather than explicitly writing out
the type, you can use the auto keyword:

auto var = expression;
● Don’t go crazy with this one; use it mostly to

save typing when working with container
types.

Container exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 return container of decisions made
 } else {
 Container result;
 for (each possible next choice) {
 result += exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 return result;
 }
}

Container exploreAllTheThings(initial state) {
 return exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

The Startling Truth?

S T A R T L I N G

The Startling Truth?

S T A R T I N G

The Startling Truth?

S T A R I N G

The Startling Truth?

S T R I N G

The Startling Truth?

S T I N G

The Startling Truth?

S I N G

The Startling Truth?

S I N

The Startling Truth?

I N

The Startling Truth?

I

Is there really just one nine-letter
word with this property?

All Possible Paths

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

“Cart” is
shrinkable...

“Cart” is
shrinkable...

... because “art” is
shrinkable ...

... because “art” is
shrinkable ...

... because “at” is
shrinkable ...

... because “at” is
shrinkable ...

... because “a” is a
single-letter word.

... because “a” is a
single-letter word.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

UP

P U

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

SP

P S P U S U

USP

SP

P S

CP

P C

CS

S C

CSP

P U

CP

P C

CU

U C S U

CS

C S

CU

U C

CUS

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

CP

P C

CU

U C

CUP

US

S U

CS

C S

CU

U C

CUS

UP

P U

“Up” is not
shrinkable...

“Up” is not
shrinkable...

... because neither
P nor U are words.

... because neither
P nor U are words.

All Possible Paths

CUSP

SP

P S

UP

P U

US

S U

USP

SP

P S

CP

P C

CS

S C

CSP

P C U C

US

S U

CS

C S

CU

U C

CUS

P U

CP CU

CUP

UP

“Cup” is not
shrinkable...

“Cup” is not
shrinkable...

... because none of
these are shrinkable

words.

... because none of
these are shrinkable

words.

All Possible Paths

SP

P S

UP

P U

US

S U

SP

P S

CP

P C

CS

S C P C U C

US

S U

CS

C S

CU

U CP U

CP CUUP

CUSP

USP CSP CUSCUP

“Cusp” is not
shrinkable...

“Cusp” is not
shrinkable...

... because none of
these are shrinkable

words.

... because none of
these are shrinkable

words.

Shrinkable Words

● A shrinkable word is a word that can be reduced
down to one letter by removing one character at a
time, leaving a word at each step.

● Base Cases:

● A string that is not a word is not a shrinkable word.
● Any single-letter word is shrinkable (A, I, and O).

● Recursive Step:

● A multi-letter word is shrinkable if you can remove
a letter to form a shrinkable word.

● A multi-letter word is not shrinkable if no matter
what letter you remove, it’s not shrinkable.

Our Solution, In Action

The Incredible Shrinking Word

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Your Action Items

● Read Chapter 9 of the textbook.
● There’s tons of cool backtracking examples

there, and it will help you prep for Friday.
● Keep working on Assignment 3.

● If you’re following our timetable, you should
be done with all parts except Shift
Scheduling.

● Ask for help if you need it! That’s what we’re
all here for.

Next Time

● Output Parameters
● Recovering the solution to a backtracking

problem.
● More Backtracking

● Techniques in searching for feasibility.
● Closing Thoughts on Recursion

● It’ll come back, but we’re going to focus on
other things for a while!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

