
  

Searching and Sorting
Part Two



  

Assignment 5

● Assignment 5 (Data Sagas) goes out 
today.

● It’s due two weeks from today, since 
we figured you’d want some time to 
decompress after the midterm.

● You can start now if you’d like, but we 
aren’t expecting you to and some of the 
parts of the assignment require topics 
from next week. They’re well-marked.



  

Recap from Last Time
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Selection sort and insertion sort each
run in time O(n2) in the worst case.

 

Doubling the size of the
input quadruples the runtime.

 

Halving the size of the
input quarters the runtime.
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by one.
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Prediction: This 
should be four 
times as fast as 
insertion sort.
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should be four 
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Splitting to the Extreme

● Splitting our array in half, sorting each 
half, and merging the halves was twice 
as fast as insertion sort.

● Splitting our array in quarters, sorting 
each quarter, and merging the quarters 
was four times as fast as insertion sort.

● Question: What happens if we never 
stop splitting?
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Mergsort

● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already 
sorted.

● Recursive step:
● Break the list in half and recursively sort 

each part.
● Use merge to combine them back into a single 

sorted list.



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) {
      return;
   }
 
   /* Split v into two subvectors. */
   int half = v.size() / 2;
   Vector<int> left  = v.subList(0, half);
   Vector<int> right = v.subList(half);
 
   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

How fast is mergesort?
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Now, the theory!
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How much work does 
mergesort do at each level of 

recursion?
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Each recursive call cuts the 
array size in half.
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each subarray has size n / 2k.

n / 2 
elements

n / 2 
elements

n / 8 
elements

n / 8 
elements

n / 1 
elements

n / 1 
elements



  

O(n)

O(n)

O(n)

O(n)

O(n)

The recursion stops when 
we’re down to a single 

element.
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What choice of k makes
n / 2k = 1?

Answer: k = log₂ n.

Useful intuition: 
you can only cut 
something in half 

O(log n) times 
before you run out 

of elements.

Useful intuition: 
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There are O(log n) levels in the recursion.
 

Each level does O(n) work.
 

Total work done: O(n log n).



  

Can we do Better?

● Mergesort runs in time O(n log n), which is faster than 
insertion sort’s O(n2).

● Can we do better than this?
● A comparison sort is a sorting algorithm that only 

learns the relative ordering of its elements by making 
comparisons between elements.
● All of the sorting algorithms we’ve seen so far are 

comparison sorts.
● Theorem: There are no comparison sorts whose 

average-case runtime can be better than O(n log n).
● If we stick with making comparisons, we can only hope 

to improve on mergesort by a constant factor!



  

A Quick Historical Aside

● Mergesort was one of the first algorithms 
developed for computers as we know 
them today.

● It was invented by John von Neumann in 
1945 (!) as a way of validating the design 
of the first “modern” (stored-program) 
computer.

● Want to learn more about what he did? 
Check out this article by Stanford’s very 
own Donald Knuth.

https://fermatslibrary.com/s/von-neumanns-first-computer-program


  

An Interesting Observation

● Big-O notation talks about long-term growth, but 
says nothing about small inputs.

● For small inputs, insertion sort can be faster than 
mergesort.
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Mergesort
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SortInsertion 
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Insertion 
sort faster

Mergesort 
faster

Mergesort 
faster



  

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
    if (v.size() <= kCutoffSize) { 
        insertionSort(v); 
    } else { 
        int half = v.size() / 2;
        Vector<int> left  = v.subList(0, half);
        Vector<int> right = v.subList(half);
    
        hybridMergesort(left);
        hybridMergesort(right);
     
        merge(left, right, v);
     }
}
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Why Sort?



  

Suppose we want to search an array for an 
element, and we know that array is sorted.

 

We could scan from left to right to find that 
element, but that takes time O(n).

 

Can we take advantage of the fact that the 
list is sorted?
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This algorithm is called binary search.



  

bool binarySearchRec(const Vector<int>& elems, int key,
                     int low, int high) {
    /* Base case: If we're out of elements, horror of horrors!
     * Our element does not exist.
     */
    if (low == high) return false;
 

    /* Probe the middle element. */
    int mid = low + (high - low) / 2;
 

    /* We might find what we're looking for! */
    if (key == elems[mid]) return true;
 

    /* Otherwise, discard half the elements and search
     * the appropriate section.
     */
    if (key < elems[mid]) {
        return binarySearchRec(elems, key, low, mid);
    } else {
        return binarySearchRec(elems, key, mid + 1, high);
    }
}
 

bool binarySearch(const Vector<int>& elems, int key) {
    return binarySearchRec(elems, key, 0, elems.size());
}

Question to ponder: 
how does this code 
correspond to the 

example from earlier?

Question to ponder: 
how does this code 
correspond to the 

example from earlier?



  

Binary Search

● How fast is binary search?
● Each round does a constant amount of work 

(checking how the key relates to the middle). 
● Each round tosses away half the elements.
● We can only toss away half the elements 

O(log n) times before no elements are left.
● Worst-case runtime: O(log n).
● Question to ponder: what’s the best-case 

runtime?
● This is exponentially faster than scanning 

from the left to the right!



  

Why All This Matters

● Big-O notation gives us a quantitive way 
to predict runtimes.

● Those predictions provide a quantitive 
intuition for how to improve our 
algorithms.

● Understanding the nuances of big-O 
notation then leads us to design algorithms 
that are better than the sum of their parts.

● We can use binary search to look inside 
sorted sequences really, really quickly.



  

Your Action Items

● Read Chapter 10.
● There’s a bunch of goodies about big-O, searching, 

and sorting in there we didn’t have time to explore 
here.

● Study for the Midterm.
● There are practice exams available online. You’ve got 

the section handouts. And we have that handy 
“Preparing for the Exam” handout as well!

● Take a Peek at Assignment 5.
● You have an extra week to do this one and we don’t 

anticipate you’ll start it now. But it doesn’t hurt to flip 
through it.



  

Next Time

● Designing Abstractions
● How do you build new container classes?

● Class Design
● What do classes look like in C++?
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