Hashing

Part One

Way Back When...

int nameHash(string first, string last){
/* This hashing scheme needs two prime numbers, a large prime and a small
* prime. These numbers were chosen because their product is less than
* 27231 - kLargePrime - 1.
*/
static const int kLargePrime
static const int kSmallPrime

16908799;
127;

int hashval = 0;

/* Iterate across all the characters in the first name, then the last
* name, updating the hash at each step.
*/
for (char ch: first + last) {
/* Convert the input character to lower case. The numeric values of
* lower-case letters are always less than 127.
*/
ch = tolower(ch);
hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
}

return hashval;

NN

N~

Hash Function

This is a hash function. It’s a type of function some
smart math and CS people came up with.

NN

N~

Hash Function

Most hash functions return a number.
In CS106B, we’ll use the int type.

NN

N~

Hash Function

Different hash functions take inputs of different types.
In this example, we’ll assume it takes string inputs.

NN

N~

Hash Function

What makes this function so special?

dikdik"
I _» 28156

NN

N~

Hash Function
dikdik'—

First, if you compute the hash code of the same string
many times, you always get the same value.

"dikdik'—

llpudull —>

ki —

NN

N~

Hash Function

—» 28156

—> 3327

Second, the hash codes of different inputs are
(usually) very different from one another.

"dikdik'—

npuduu N
||kudu|| —p
dikdik'—

Even very similar inputs give
very different outputs!

NN

N~

Hash Function

—» 28156

» 13985

—> 3327

To Recap:

Equal inputs give equal outputs.

Unequal inputs (usually) give
very different outputs.

@)

htiek: Gerenuk Quokka
kerdman: Pudu_Dikdik
gkim248: Springbok Kudu

& y

How do servers store passwords?

Hellor My name is htiek, and
my password is Gerenuk_Quokka,
Whatever Thal means.

htiek: Gerenuk Quokka
kerdman: Pudu_Dikdik
gkim248: Springbok Kudu

&
& y

How do servers store passwords?

My name 1s htiek,
and my password is,

um, hold on..

S

htiek: 29157389323963039
kerdman: 54162041201524803
gkim248: 30965171063527336

@@

NN

N

Hash Function

How do servers store passwords?

This is how passwords are typically stored.
Look up salting and hashing for details!

And look up commitment schemes if you
want to see some even cooler things!

I love
you!

Did my data make it through the network?

I lave
you!

Did my data make it through the network?

I late
you!

Did my data make it through the network?

I hate
you!

Did my data make it through the network?

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

DOES NOT
COMPUTE
PLEASE RETRY

I lave you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

DOES NOT
COMPUTE
PLEASE RETRY

I lote you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

—

I love you!
15898193

NN

N~

Hash Function

Did my data make it through the network?

This is done in practice!

Look up SHA-256, the Luhn algorithm,
and CRC32 for some examples!

Designing Hash Functions

* Designing good hash
functions is
challenging, and it’s
beyond the scope of
what we’ll explore in
CS106B.

* Interested in things
like independent
random variables, _ a1
finite fields, and the Frirb)=s A hly)=tl = 7
like? Come talk to me
after class and I'll give

the rundown. h(x)=> ax

h(x2x1x0) = To[xo] & T1[x1] & T2[x2]

Working with Hash Functions

Working with Hash Functions

» Every programming language has a different
way for programmers to work with hash
functions.

* In CS106B, we’ll represent hash functions
using the type HashFunction<Ts.

. NN ;
string it >
- N

HashFunction<string>

Working with Hash Functions

» Every programming language has a different
way for programmers to work with hash
functions.

* In CS106B, we’ll represent hash functions
using the type HashFunction<Ts.

double o int -
> |

HashFunction<double>

Working with Hash Functions

» Every programming language has a different
way for programmers to work with hash
functions.

* In CS106B, we’ll represent hash functions
using the type HashFunction<Ts.

NN int
T > _ >

HashFunction<T>

Working with Hash Functions

 Sometimes, you want a hash function that
outputs values in a wide range.

« For example, when storing hashes of passwords.
(Why?)

 Sometimes, you want a hash function that
outputs values in a small range.

 For example, assigning students to one of a
handful of exam rooms.

e Our HashFunction<T> returns a value in the
range 0, 1, 2, ..., n - 1, where n is some
number you provide to the constructor.

An Application:
HashMap and HashSet

An Application:
HashMap and HashSet

class OurHashSet {
public:
OurHashSet();

vold add(const std::string& str);
bool contains(const std::string& str) const;

int size() const;
bool i1sEmpty() const;

private:
/* What goes here? */

In header files, we refer to the
string type as std::string. It’s
an Endearing C++ Quirk. Feel
} . free to ask me about this after
class if you're curious why.

class OurHashSet {
public:
OurHashSet();

void add(const std::string& str);
bool contains(const std::string& str) const;

int size() const;
bool i1sEmpty() const;

In header files, we refer to the

string type as std::string. It’s

an Endearing C++ Quirk. Feel

} . free to ask me about this after
! class if you're curious why.

What goes here? */

Clothes

An Example

Our Strategy

 Maintain a large number of small
collections called buckets (think
drawers).

e Find a rule that lets us tell where each
object should go (think knowing which
drawer is which).

* To find something, only look in the
bucket assigned to it (think looking for
socks).

Our Strategy

e Find a rule that lets us tell where each
object should go (think knowing which

drawer is which). Use a3 hach
function:

Buckets

Buckets

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

bool OurHashSet::contains(const string& value) const {

erato

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

bool OurHashSet::contains(const string& value) const {
int bucket = hashFn(value);

erato

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

bool OurHashSet::contains(const string& value) const {
int bucket = hashFn(value);

erato

(bucket 3)

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

bool OurHashSet::contains(const string& value) const {
int bucket = hashFn(value);

for (string elem: buckets[bucket]) {

erato
if (elem == value) return true;

} (bucket 3)
return false;

[3]

clio

erato

bool OurHashSet::contains(const string& value) const {
int bucket = hashFn(value);

for (string elem: buckets[bucket]) {

(erato
if (elem == value) return true;

) (bucket 3)
return false;

Buckets

Buckets | [0] [1] [2] [3] [4] [5]

calliope | |polyhymnia | euterpe clio melpomene

terpsichore erato thalia

vold OurHashSet::add(const string& value) {

urania

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);

urania

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);

urania

(bucket 2)

Buckets | [0] [1] [2] [3] [4] [5]

calliope || polyhymnia | euterpe clio melpomene

terpsichore erato thalia

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);
buckets[bucket] += value;

urania

(bucket 2)

Buckets | [0] [1] [2] [3] [4] [5]
calliope | polyhymnia | euterpe clio melpomene
terpsichore erato thalia
urania

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);
buckets[bucket] += value;

urania

(bucket 2)

Buckets | [0] [1] [2] [3] [4] [5]
calliope | polyhymnia | euterpe clio melpomene
terpsichore erato thalia
urania

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);
buckets[bucket] += value;
numElems++;

urania

(bucket 2)

Buckets | [0] [1] [2] [3] [4] [5]
calliope | polyhymnia | euterpe clio melpomene
terpsichore erato thalia
urania

vold OurHashSet::add(const string& value) {
int bucket = hashFn(value);

for (string elem: buckets[bucket]) {
if (elem == value) return;

urania

}

buckets[bucket] += value;
numElems++;

(bucket 2)

How efficient is this?

Efficiency Concerns

« Each hash table operation
* chooses a bucket and jumps there, then
« potentially scans everything in the bucket.

* Claim: The efficiency of our hash table depends on
how well-spread the elements are.

-
-
-
-
-
-
-

Efficiency Concerns

« Each hash table operation
* chooses a bucket and jumps there, then
« potentially scans everything in the bucket.

* Claim: The efficiency of our hash table depends on
how well-spread the elements are.

Etficiency Concerns

 For a hash table to be fast, we need a hash
function that spreads things around nicely.

 We’ll assume our HashFunction<T> type
distributes elements more or less randomly.

« Writing good hash functions - or quantifying
how good they are - is the domain of courses

like CS161, CS166, and CS265. Come talk to
me after class if you’'re curious!

Analyzing our Efficiency

* Let’s suppose we have a “strong” hash
function that distributes elements fairly evenly.

 Imagine we have b buckets and n elements in
our table.

 On average, how many elements will be in a
bucket?

Answer: n/ b

 The expected cost of an insertion, deletion, or
lookup is therefore

O(1 + n/b).

[.oad Factors

 The load factor of a hash table with n
elements and b buckets is denoted a and
given by the expression

a=n/bhb.

* If a gets too big, the hash table will be
too slow.

* If a gets too low, the hash table will
waste too much space.

« How do we balance things?

Remember When?

* Think back to how we
implemented the Stack.

PP
* Initially, we had a fixed 157 42 12713 e
number of slots. f

* Once we ran out of
space, we doubled the element
number of slots and array
transferred things over. | aiocated

- 4
e Can we do that here? S

 Idea: Double the table logical 3
size whenevern/ b = 2. S12€

I only produce hash
codes in this range!

r N
[1] [2] [3] [4] [5]
zoy o]

OfL
AN
fol

No worries! I'll
cover the whole

range.

S N
hashFn newHash
_ yd _

[2]

[3]

[4]

[5]

<

o,
oX
rlo

OfL
AN
fol

I'll tell each of you
where you need to
go in this new table!

VA NN VA NN

N N

hashFn newHash
ST RAA 0| H 22 QA EES

[O] [1] [2] [3] [4] [5]

I'll tell each of you
where you need to
go in this new table!

N N
hashFn newHash

zojH oL QA BES

[O] [1] [2] [3] [4] [5]

<

of
oyl
tol

I'll tell each of you
where you need to
go in this new table!

N N
hashFn newHash

QRN RS

[O] [1] [2] [3] [4] [5]

<
<

N
2
o)
of
o
folr

/N

/N

N

hashFn

I'll tell each of you
where you need to
go in this new table!

VA NVAN

N

newHash

29

Al
al

225

[O]

[2]

[3]

[4]

[5]

<

<

of
oyl
tol

o
rlo

VA NVAN

N

hashFn

I'll tell each of you
where you need to

go in this new table!

VA NVAN

N

newHash

225

[O]

[2]

[3]

[4]

[5]

<

<

of
oyl
tol

o
rlo

VA NVAN

N

hashFn

I'll tell each of you
where you need to

go in this new table!

VA NVAN

N
newHash

[O]

[2]

[3]

[4]

[5]

<

<

of
oyl
tol

o
rlo

-— Ui

oL
Ay
ol

VA NVAN

N

hashFn

I'll tell each of you
where you need to

go in this new table!

VA NVAN

N
newHash

[O]

[2]

[4]

[5]

<

o
rlo

-— Ui

oL
Ay
ol

VA NVAN

N

hashFn

Thanks! My work
here is done!

VA NVAN

N
newHash

[O]

[2]

[4]

[5]

<

o
rlo

-— Ui

oft
Ay
ol

VA NVAN

N
newHash

[O]

[2]

[4]

for

ol e

1%
ot

VANVAN

N

hashFn

The Final Scorecard

 Hash tables are really fast!
* The expected cost of a lookup is O(1).
 The expected cost of an insertion is O(1).

* (It’s actually expected amortized O(1), since
we do some work to copy things over, but
only very infrequently.)

» This is about as good as it gets!

Next Time

 Linear Probing
» A different strategy for building hash tables.

* Robin Hood Hashing

* A clever and fast hashing strategy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

