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It's All Bits and Bytes

● Digital data is stored as sequences of 0s and 1s.
● Usually encoded by magnetic orientation on small 

(10nm!) metal particles or by trapping electrons in 
small gates.

● A single 0 or 1 is called a bit.
● A group of eight bits is called a byte.

00000000, 00000001, 00000010, …
00000011, 00000100, 00000101, …

● There are 28 = 256 different bytes.
● Great practice: Write a function to list all of them!



  

Representing Text

● We think of strings as being made of characters 
representing letters, numbers, emojis, etc.

● Computers require everything to be written as 
zeros and ones.

● To bridge the gap, we need to agree on some 
way of representing characters as sequences of 
bits.

● Idea: Assign each character a sequence of bits 
called a code.



  

ASCII

● Early (American) computers needed some standard 
way to send output to their (physical!) printers.

● Since there were fewer than 256 different 
characters to print (1960’s America!), each 
character was assigned a one-byte value.

● This initial code was called ASCII. Surprisingly, it’s 
still around, though in a modified form (more on 
that later).

● For example, the letter A is represented by the byte 
01000001 (65). You can still see this in C++:

cout << int('A') << endl; // Prints 65
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● Here’s a small 
segment from the 
ASCII encodings 
for characters.

● What is the title of 
this slide?

character code

01001000H
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An Observation

● In ASCII, every character has exactly the 
same number of bits in it.

● Any message with n characters will use 
up exactly 8n bits.
● Space for CS106BLECTURE: 104 bits.
● Space for COPYRIGHTABLE: 104 bits. 

● Question: Can we reduce the number of 
bits needed to encode text?



  

KIRK'S DIKDIK



  

A Different Encoding

● ASCII uses one byte per 
character. There are 256 
possible bytes.

● If we’re specifically writing 
the string KIRK'S DIKDIK, 
which has only seven different 
characters, using full bytes is 
wasteful.

● Here’s a three-bit encoding 
we can use to represent the 
letters in KIRK'S DIKDIK.

● This uses 37.5% as much 
space as what ASCII uses.

K I R K ' S D␣ I K D I K
000 000 000 000001 001 001010 011 100 101 110 110
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Where We’re Going

● Storing data using the ASCII encoding is 
portable across systems, but is not ideal 
in terms of space usage.

● Building custom codes for specific 
strings might let us save space.

● Idea: Use this approach to build a 
compression algorithm to reduce the 
amount of space needed to store text.



  

The Key Idea

● If we can find a way to

give all characters a bit pattern,

that both the sender and receiver know 
about, and

that can be decoded uniquely,

then we can represent the same piece of 
text in multiple different ways.

● Goal: Find a way to do this that uses less 
space than the standard ASCII 
representation.



  

Exploiting Redundancy

● Not all letters have the 
same frequency in 
KIRK'S DIKDIK.

● Here’s the frequencies 
of each letter.

● So far, we’ve given 
each letter codes of the 
same length.

● Key Question: Can we 
give shorter encodings 
to more common 
characters?
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A First Attempt
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The Problem

● If we use a different number of bits for 
each letter, we can't necessarily uniquely 
determine the boundaries between 
letters.

● We need an encoding that makes it 
possible to determine where one 
character stops and the next starts.

● Is this possible? If so, how?
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Prefix Codes

● A prefix code is 
an encoding 
system in which no 
code is a prefix of 
another code.

● Here’s a sample 
prefix code for the 
letters in KIRK'S 
DIKDIK.
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Prefix Codes

● Using this prefix code, we can represent 
KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

● This uses just 34 bits, compared to our 
initial 104. Wow!

● But where did this code come from? How 
could you come up with codes like this 
for other strings?
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How do you find a “good” prefix code?



  

The Main Insight
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Coding Trees

● Not all binary trees 
will work as coding 
trees.

● Why is the one to 
the right not a valid 
coding tree?

● Answer: It doesn’t 
give a prefix code. 
The code for A is a 
prefix for the codes 
for C and D.
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Coding Trees

● A coding tree is 
valid if all the 
letters are stored 
at the leaves, with 
internal nodes just 
doing the routing.

● Goal: Find the 
best coding tree 
for a string.
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How do we find the best binary tree with 
this property?



  

Huffman Coding
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    ★    Huffman Coding    ★    
● Create a priority queue that holds partial trees.
● Create one leaf node per distinct character in 

the input string. The weight of that leaf is the 
frequency of the character. Add each to the 
priority queue.

● While there are two or more trees in the 
priority queue:
● Dequeue the two lowest-priority trees.
● Combine them together to form a new tree whose 

weight is the sum of the weights of the two trees.
● Add that tree back to the priority queue.



  

An Important Detail
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Prefix Codes

1001001100001101110011101101110110



  

Prefix Codes

1001001100001101110011101101110110



  

Transmitting the Tree

● In order to decompress the text, we have to 
remember what encoding we used!

● Idea: Prefix the compressed data with a header 
containing information to rebuild the tree.

 
● This might increase the total file size!
● Theorem: There is no compression algorithm 

that can always compress all inputs.
● Proof: Take CS103!

Encoded Tree 110111001011101111000100110101011110… 



  

Summary of Huffman Encoding

● Prefix-free encodings can be modeled as 
binary trees.

● Huffman encoding uses a greedy 
algorithm to construct encodings.

● We need to send the encoding table with 
the compressed message.



  

More to Explore

● UTF-8 and Unicode
● A variable-length encoding that has since replaced 

ASCII.
● Kolmogorov Complexity

● What’s the theoretical limit to compression techniques?
● Adaptive Coding Techniques

● Can you change your encoding system as you go?
● Shannon Entropy

● A mathematical bound on Huffman coding.
● Binary Tries

● Other applications of trees like these!



  

Your Action Items

● Start Assignment 8.
● You have plenty of time to finish this one if 

you begin early.
● Please don’t wait until the last minute – no 

late submissions will be accepted.



  

Next Time

● Graphs
● Representing networks of all sorts.

● Graph Searches
● A new perspective on some earlier ideas.
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