

Beyond Data Structures

It's All Bits and Bytes

● Digital data is stored as sequences of 0s and 1s.
● Usually encoded by magnetic orientation on small

(10nm!) metal particles or by trapping electrons in
small gates.

● A single 0 or 1 is called a bit.
● A group of eight bits is called a byte.

00000000, 00000001, 00000010, …
00000011, 00000100, 00000101, …

● There are 28 = 256 different bytes.
● Great practice: Write a function to list all of them!

Representing Text

● We think of strings as being made of characters
representing letters, numbers, emojis, etc.

● Computers require everything to be written as
zeros and ones.

● To bridge the gap, we need to agree on some
way of representing characters as sequences of
bits.

● Idea: Assign each character a sequence of bits
called a code.

ASCII

● Early (American) computers needed some standard
way to send output to their (physical!) printers.

● Since there were fewer than 256 different
characters to print (1960’s America!), each
character was assigned a one-byte value.

● This initial code was called ASCII. Surprisingly, it’s
still around, though in a modified form (more on
that later).

● For example, the letter A is represented by the byte
01000001 (65). You can still see this in C++:

cout << int('A') << endl; // Prints 65

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

01001000010001010100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

01001000010001010100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H 010001010100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H 010001010100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H E 0100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H E 0100000101000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H E A 01000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H E A 01000100

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

01000001

01000010

01000100

01000111

01000101

01000110

A

D

B

C

E

G

F

01000011

 H E A D

● Here’s a small
segment from the
ASCII encodings
for characters.

● What is the title of
this slide?

character code

01001000H

An Observation

● In ASCII, every character has exactly the
same number of bits in it.

● Any message with n characters will use
up exactly 8n bits.
● Space for CS106BLECTURE: 104 bits.
● Space for COPYRIGHTABLE: 104 bits.

● Question: Can we reduce the number of
bits needed to encode text?

KIRK'S DIKDIK

A Different Encoding

● ASCII uses one byte per
character. There are 256
possible bytes.

● If we’re specifically writing
the string KIRK'S DIKDIK,
which has only seven different
characters, using full bytes is
wasteful.

● Here’s a three-bit encoding
we can use to represent the
letters in KIRK'S DIKDIK.

● This uses 37.5% as much
space as what ASCII uses.

K I R K ' S D␣ I K D I K
000 000 000 000001 001 001010 011 100 101 110 110

000

001

011

110

100

010

101

K

'

I
R

S
␣

D

character code

Where We’re Going

● Storing data using the ASCII encoding is
portable across systems, but is not ideal
in terms of space usage.

● Building custom codes for specific
strings might let us save space.

● Idea: Use this approach to build a
compression algorithm to reduce the
amount of space needed to store text.

The Key Idea

● If we can find a way to

give all characters a bit pattern,

that both the sender and receiver know
about, and

that can be decoded uniquely,

then we can represent the same piece of
text in multiple different ways.

● Goal: Find a way to do this that uses less
space than the standard ASCII
representation.

Exploiting Redundancy

● Not all letters have the
same frequency in
KIRK'S DIKDIK.

● Here’s the frequencies
of each letter.

● So far, we’ve given
each letter codes of the
same length.

● Key Question: Can we
give shorter encodings
to more common
characters?

4

3

1

1

1

1

K

'

I

R

S
␣

character frequency

2D

A First Attempt

01010101110000100010

0

1

10

11

01

100

K

'

I

R

S
␣

character code

00D

K I R K ' S D␣ I K D I K
0 0 0 01 1 101 10 11 100 00 00

A First Attempt

01010101110000100010

0

1

10

11

01

100

K

'

I

R

S
␣

character code

00D

A First Attempt

01010101110000100010

0

1

10

11

01

100

K

'

I

R

S
␣

character code

00D

K I R K ' S D␣ I K D I K
0 0 0 01 1 101 10 11 100 00 00

A First Attempt

01010101110000100010

0

1

10

11

01

100

K

'

I

R

S
␣

character code

00D

R R R R I ' DK ' K K '
01 01 001 10 1001 1 10 0 00 0

A First Attempt

01010101110000100010

0

1

10

11

01

100

K

'

I

R

S
␣

character code

00D

R R R R I ' DK ' K K '
01 01 001 10 1001 1 10 0 00 0

The Problem

● If we use a different number of bits for
each letter, we can't necessarily uniquely
determine the boundaries between
letters.

● We need an encoding that makes it
possible to determine where one
character stops and the next starts.

● Is this possible? If so, how?

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

● A prefix code is
an encoding
system in which no
code is a prefix of
another code.

● Here’s a sample
prefix code for the
letters in KIRK'S
DIKDIK.

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

K I R K ' S D␣ I K D I K
10 10 10 1001 01 01001 000 11011100 111 111

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K I R K ' S D␣ I K D I K
10 10 10 1001 01 01001 000 11011100 111 111

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

Prefix Codes

1001001100001101110011101101110110

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

R
001

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K
10

I
01

R
001

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

● Using this prefix code, we can represent
KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

● This uses just 34 bits, compared to our
initial 104. Wow!

● But where did this code come from? How
could you come up with codes like this
for other strings?

1001001100001101110011101101110110

111111011111011101111110110100111101111101111110111101111101111110

1111110

111110

110

10

1110

0

K

'

I

R

S
␣

character code

11110D

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

How do you find a “good” prefix code?

The Main Insight

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

000

001

100

101

011

110

K

'

I

R

S

character code

010D

This special type of
binary tree is called a

coding tree.

This special type of
binary tree is called a

coding tree.

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

000

001

100

101

011

110

K

'

I

R

S

character code

010D

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

101000001

What is the
title of this

slide?

What is the
title of this

slide?

S

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

S

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S 000001

What is the
title of this

slide?

What is the
title of this

slide?

K

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

K

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide? ★

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K 001

What is the
title of this

slide?

What is the
title of this

slide?

I

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K I

What is the
title of this

slide?

What is the
title of this

slide?

I

K I D R ' S ␣

0 0 0 0

0 0

 1

0

 1 1

 1

 1

 1

 S K I

What is the
title of this

slide?

What is the
title of this

slide?

Coding Trees

● Not all binary trees
will work as coding
trees.

● Why is the one to
the right not a valid
coding tree?

● Answer: It doesn’t
give a prefix code.
The code for A is a
prefix for the codes
for C and D.

C D E F

A B
0 0

0

 1 1

 1

Coding Trees

● A coding tree is
valid if all the
letters are stored
at the leaves, with
internal nodes just
doing the routing.

● Goal: Find the
best coding tree
for a string.

S 1

0 6C
0

0 0

0

 1

 1 1

 1

How do we find the best binary tree with
this property?

Huffman Coding

4

3

1

1

1

1

K

'

I

R

S

character frequency

2D

K I D R ' S ␣
4 3 2 1 1 1 1

K I D R ' S ␣
4 3 2 1 1 1 1

Right now, we have all the
leaves of the tree. We now

need to build the tree
around them.

Right now, we have all the
leaves of the tree. We now

need to build the tree
around them.

K I D R ' S ␣
4 3 2 1 1 1 1

K I D R ' S

4 3 2 1 1 1

␣
1

K I D R '

␣ S

4 3 2 1 1

1 1

K I D R '

␣ S

4 3 2 1 1

1 1

0 1

K I D R '

␣ S

4 3 2 1 1

1 1

0 1

2

K I D R '

4 3 2 1 1

␣ S
1 1

0 1

2

K I D R '

␣ S

4 3 2 1 1

1 1

0 1

2

K I D R

␣ S

4 3 2 1

1 1

0 1

2

'

1

K I D

R'

␣ S

4 3 2

11

1 1

0 1

2

K I D

R'

␣ S

4 3 2

11

1 1

0 1

2

0 1

K I D

R'

␣ S

4 3 2

11

1 1

0 1

2

0 1

2

K I D

␣ S

4 3 2

1 1

0 1

2

R'

11

0 1

2

K I D

R' ␣ S

4 3 2

11 1 1

0 1

2

0 1

2

K I D

R'

4 3 2

11

0 1

2

␣ S
1 1

0 1

K I

D

R'

␣ S

4 3

2

11

1 1

0 1

0 1

2

K I

D

R'

␣ S

4 3

2

11

1 1

0 1

0 1

2

0 1

K I

D

R'

␣ S

4 3

2

11

1 1

0 1

4

0 1

2

0 1

K I

R'

4 3

11

0 1

2

D

␣ S
2

1 1

0 1

4

0 1

K I

D R'

␣ S

4 3

2 11

1 1

0 1

4

0 1

2

0 1

K I

D

␣ S

4 3

2

1 1

0 1

4

0 1

R'

11

0 1

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

4

0 1

0 1

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

4

0 1

0 1

 10

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

4

0 1

0 1

 10

5

K

D

␣ S

4

2

1 1

0 1

4

0 1

I

R'

3

11

0 1

 10

5

K

I D

R' ␣ S

4

3 2

11 1 1

0 1

4

0 1

0 1 10

5

I D

R' ␣ S
3 2

11 1 1

0 1

4

0 1

0 1 10

5

K

4

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

0 1

0 1

 10

5

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

0 1

0 1

 10

5

0 1

K

I

D

R'

␣ S

4

3

2

11

1 1

0 1

80 1

0 1

 10

5

0 1

I

R'

3

11

0 1

 10

5

K

D

␣ S

4

2

1 1

0 1

8

0 1

0 1

K

D

␣ S

4

2

1 1

0 1

8

0 1

I

R'

3

11

0 1

 10

5

0 1

K

D

␣ S

4

2

1 1

0 1

8

0 1

0 1

I

R'

3

11

0 1

 10

K

D

␣ S

4

2

1 1

0 1

0 1

I

R'

3

11

0 1

 10 0 1

K

D

␣ S

4

2

1 1

0 1

0 1

I

R'

3

11

0 1

 10 0 1

 10

K

D

␣ S

4

2

1 1

0 1

0 1

I

R'

3

11

0 1

 10 0 1

 10

13

K

D

␣ S

4

2

1 1

0 1

0 1

I

R'

3

11

0 1

 10 0 1

 10

13

K

D

␣ S

0 1

0 1

I

R'

0 1

 10 0 1

 10

K

D

␣ S

0 1

0 1

I

R'

0 1

 10 0 1

 10 10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

 ★ Huffman Coding ★
● Create a priority queue that holds partial trees.
● Create one leaf node per distinct character in

the input string. The weight of that leaf is the
frequency of the character. Add each to the
priority queue.

● While there are two or more trees in the
priority queue:
● Dequeue the two lowest-priority trees.
● Combine them together to form a new tree whose

weight is the sum of the weights of the two trees.
● Add that tree back to the priority queue.

An Important Detail

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

K I R K ' S D␣ I K D I K
10 10 10 1001 01 01001 000 11011100 111 111

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

K I R K ' S D␣ I K D I K
10 10 10 1001 01 01001 000 11011100 111 111

10

01

000

1101

001

1100

K

'

I

R

S
␣

character code

111D

Prefix Codes

1001001100001101110011101101110110

Prefix Codes

1001001100001101110011101101110110

Prefix Codes

1001001100001101110011101101110110

Transmitting the Tree

● In order to decompress the text, we have to
remember what encoding we used!

● Idea: Prefix the compressed data with a header
containing information to rebuild the tree.

● This might increase the total file size!
● Theorem: There is no compression algorithm

that can always compress all inputs.
● Proof: Take CS103!

Encoded Tree 110111001011101111000100110101011110…

Summary of Huffman Encoding

● Prefix-free encodings can be modeled as
binary trees.

● Huffman encoding uses a greedy
algorithm to construct encodings.

● We need to send the encoding table with
the compressed message.

More to Explore

● UTF-8 and Unicode
● A variable-length encoding that has since replaced

ASCII.
● Kolmogorov Complexity

● What’s the theoretical limit to compression techniques?
● Adaptive Coding Techniques

● Can you change your encoding system as you go?
● Shannon Entropy

● A mathematical bound on Huffman coding.
● Binary Tries

● Other applications of trees like these!

Your Action Items

● Start Assignment 8.
● You have plenty of time to finish this one if

you begin early.
● Please don’t wait until the last minute – no

late submissions will be accepted.

Next Time

● Graphs
● Representing networks of all sorts.

● Graph Searches
● A new perspective on some earlier ideas.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

