

Where to Go from Here

Taking Stock: Where Are We?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

 Assignment 1: Strings, Streams, and Recursion

 Assignment 2: Container Types

 Assignment 3: Memoization, Recursive Optimization

 Assignment 4: Recursive Backtracking

 Assignment 5: Big-O, Sorting, Dynamic Arrays

 Assignment 6: Hash Functions, Class Design

 Assignment 7: Linked Structures

 Assignment 8: Trees and Tree Searches

What We’ve Covered

Strings

Streams

Recursive Problem-Solving

Stacks

Queues

Vectors

Maps

Sets

Lexicons

What We’ve Covered

Recursive Graphics

Recursive Enumeration

Recursive Backtracking

Big-O Notation

Sorting Algorithms

Designing Abstractions

Constructors and Destructors

What We’ve Covered

Dynamic Arrays

Chained Hashing

Linear Probing

Robin Hood Hashing

Linked Lists

Binary Search Trees

Huffman Coding

Computer science is more
than just programming.

These skills will make you better
at whatever you choose to do.

So what comes next?

Courses to Take

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

What are the fundamental limits
of computing power?

How can we be certain about this?

Some infinities are bigger than other
infinities, and this has practical

consequences.

Tropes from Ancient Greek mythology can
be made mathematically rigorous to prove

limits on computing power.

Abstract models of computation have
applications in network drivers, user
interfaces, compiler design, and text

processing.

CS107
Computer Organization and Systems

What is the internal organization
of memory in a computer?

How do we bridge the dichotomy
between high-level problem-solving

and voltages in wires?

And why is this important to know?

The nature of memory layout explains why
computer security is so hard to get right.

Computers are physical devices whose
inner workings are visible even in higher-

level languages.

Compilers can sometimes rewrite recursive
functions iteratively, giving you the best of

both worlds.

What CS107 Isn't

● CS107 is not a litmus test for whether you can be
a computer scientist.

● You can be a great computer scientist without
enjoying low-level systems programming.

● CS107 is not indicative of what programming is
“really like.”

● CS107 does a lot of low-level programming. You
don't have to do low-level programming to be a good
computer scientist.

● CS107 is not soul-crushingly impossibly hard.
● It's tricky. It does not eat kittens.

● Don't be afraid to try CS107!

Other CS Courses

● Many offerings throughout the year,
focused on specific technologies:
● CS193A: Android Programming
● CS193C: Client-Side Web Technologies
● CS193I: iOS Programming
● CS193P: iPhone and iPad Programming
● CS193Q: Accelerated Intro to Python

● Great for learning particular technologies.

CS193
Programming Language Particulars

● Explore what C++ programming looks
like outside of CS106B.

● Get exposure to the standard libraries and
some really, really cool techniques beyond
what we saw here.

● Excellent next step if you’d like to work in
C++ going forward.

CS106L
 Standard C++ Programming Lab

● Broad survey of computing topics,
including
● how the internet works,
● computer security,
● how operating systems work,
● bits and bytes, and
● web programming.

● Great course if you’re interested in
working in the software industry in a non-
technical capacity.

CS106E
Practical Exploration of Computing

CS147
Intro to Human-Computer Interaction

● How do you design software to be usable?
● What are the elements of a good design?
● How do you prototype and test out

systems?
● Prerequisite: CS106B! ✓

● Why are hash tables fast? Why are random
binary search trees probably good?

● How do we encode data so that if bits get
flipped in transit, the message still
arrives?

● How do I explore big data sets and make
sense of them?

● What is this whole machine learning thing,
how does it work, and how do I do it?

CS109
Probability for Computer Scientists

The CS Major

Thinking about CS?

● Good reasons to think about doing CS:
● I like the courses and what I’m doing in them.
● I like the people I’m working with.
● I like the impact of what I’m doing.
● I like the community.

● Bad reasons to think about not doing CS:
● I’m good at this, but other people are even better.
● The material is fun, but there’s nothing philosophically deep

about it.
● I heard you have to pick a track and I don’t know what I

want to do yet.
● What if 20 years later I’m just working in a cubicle all day

and it’s not fun and I have an Existential Crisis?

The CS Major

● A common timetable:
● Aim to complete most of the core by the end of your

sophomore year (probably CS106B, CS103, CS107,
CS109, and one of CS110 and CS161).

● Explore different tracks in your junior year and see
which one you like the most.

● Spend your senior year completing it.
● It’s okay if you start late!

● The latest time you can comfortably start a CS
major would be to take CS106A in winter quarter of
sophomore year.

● And the coterm is always an option!

The CS Coterm

The CS Coterm

● The CS coterm is open to students of all majors, not
just computer science.
● This is intentional. We want the doors to be open to all

comers.
● Thinking about applying?

● Take enough CS classes to establish a track record.
● Maintain a solid CS GPA. Aim high!

● TA and RA positions are available to offset the cost.
● Some of my best TAs did their undergrad in comparative

literature, anthropology, and, physics.

The CS Minor

Outside Stanford

Learning More

● Some cool directions to explore:
● Specific technologies. You already know

how to program. You just need to learn new
technologies, frameworks, etc.

● Algorithms. Learn more about what
problems we know how to solve.

● Software engineering. Crafting big
software systems is an art.

● Machine learning. If no new ML
discoveries were made in the next ten years,
we’d still see huge improvements.

How to Explore Them

● MOOCs are a great way to get an introduction
to more conceptual topics.
● Andrew Ng’s machine learning course, Fei Fei Li’s

computer vision course, Tim Roughgarden’s
algorithms course, and Jennifer Widom’s databases
courses are legendary.

● Learning by doing is the best way to pick up
new languages and frameworks.
● Find a good tutorial (ask around), plan to make a

bunch of mistakes, and have fun!
● Know where to ask for help.

● Stack Overflow is an excellent resource.

Some Words of Thanks

Who's Here Today?
● Aero/Astro
● Anthropology
● Art Practice
● Bioengineering
● Biology
● Business
● Chemical

Engineering
● Chemistry
● Civil/Environmental

Engineering
● Creative Writing
● Data Science
● East Asian Studies
● Economics

● Microbiology and
Immunology

● Middle Eastern
Languages / Culture

● MS&E
● Physics
● Political Science
● Product Design
● Psychology
● Public Policy
● Spanish
● Statistics
● STS
● Symbolic Systems
● SymSys
● Undeclared!

● Education
● Electrical Engineering
● Energy Resources

Engineering
● English
● Environmental Systems

Engineering
● FemGen
● Genetics
● History
● Human Biology
● Immunology
● International Relations
● Law
● Materials Science
● Mechanical

Engineering

My Email Address

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu

You now have a wide array of tools you can
use to solve a huge number of problems.

You have the skills to compare
and contrast those solutions.

You have expressive mental models
for teasing apart those problems.

My Questions to You:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

