
YEAH (Your
Early Assigment
Help) A4
B A C K T R A C K I N G

The poster for 2015 mystery-thriller
“Backtrack.” Critics gave it a 30% on Rotten
Tomatoes, citing “not enough recursion.”

What is Recursive Backtracking?
Recursive Backtracking is a recursive technique that attempts to find a solution to what I like to call a
difficult problem.

Difficult problems are problems where you need to try many different options in order to find the
correct answer. If you make a recursive step in the wrong direction, you must ‘undo’ that step and go
in a different direction.

Backtracking frequently answers the question: can this be done? That’s why many backtracking
functions return bool

What are Difficult Problems? (recursively)
Backtracking problems are sometimes described as “trying to
find a needle in a haystack.” In order to construct a
backtracking solution, you typically have to recurse on all
possible options, and if any recursive path yields success,
return that particular option.

I like to think of a maze as a classic Backtracking example. If
you were dropped in a maze, one way to escape would be to
start going in a random direction until you hit a dead end,
and then backtracking until you can go in an unexplored
direction, repeating until you reach an exit or have exhausted
every option. This is actually called a Depth First Search
(DFS), and it’s often taught with BFS like you did on A2!

Today’s Plan
0. Assignment Logistics (and why this week is special!)

1. Warmup (and why the past informs the present :o)

2. Multi-Merge (and why sorting will never be the same)

3. Boggle Score (and why computers are cheaters)

4. Banzhaf Power Index (and why democracy is broken )

But first! Some logistics
For assignment 4, you are only required to submit 2 of the 3 parts along with
the warmups.

I’ll say that again: you must submit the warmup. After that, you need only
submit 2 of the following 3 parts.

If you do all 3 parts, we’ll give you some extra credit ☺

Regardless, we recommend looking at all parts of the assignment anyway!

And I’ll go over them all right now☺

Part 1: Warmups
We highly recommend you do the warmups first. I understand that they’re not meant
to be as intense as the coding assignments, but we give you the warmup because it will
equip you with tools and knowledge you’ll need to complete the coding assignment.
Please do it first!

You will be debugging 2 recursive functions! The first exercise will give you practice
using the debugger’s “step in/out/over” functionality on a classic recursive problem
called The Towers of Hanoi.

You then will use student tests and the debugger to diagnose and fix a recursive
function that counts the number of subsets within a set whose elements sum to zero.
For example: The set {3, 1, -3} has subsets:

{ {3, 1, -3}, {3, 1}, {3, -3}, {1,-3}, {3}, {1}, {-3}, {} }

Of which only {3, -3} and {} have members who sum to zero.

These exercises will get you in great debugging shape for the rest of the assignment!

Questions about the Warmups?
I specifically left these less detailed so that you’d spend lots of time reading up on all of that
good debugging info ☺

Once again, we strongly recommend doing the warmups first. They are specifically made to
help you in each assignment!

xkcd

Part 2: Multi-Merge
In this part of the assignment, you’re going to be
tasked with implementing a very famous sorting
algorithm called MergeSort. MergeSort is a
recursive divide-and-conquer algorithm that
achieves an impressive runtime by recursively
splitting and recombining its data in sorted
order.

In this assignment, however, you’re actually
going to be implementing a special ~flavor~ of
mergeSort!

Let’s go through it step by step.

Note: this is a diagram for mergesort on integers – you
will be implementing something a little different!

Step 1: Implement the merge routine!
In the previous example, you saw we were merging together individual integers to make pairs of
integers, which would be merged etc. etc…

What if we reimplemented this idea with Queue<int> instead of integers?

Here’s the idea: given a Vector< Queue<int> recursively split the vector, so you’ll be merging
Queue<int> instead of individual integers. That way, there’s no difference between merging
single integers and merging groups of integers – in your case, it’ll just be Queue<int>’s of
different sizes!

The first thing we want you to do is to implement the merge routine, where, given two
Queue<int>’s, you combine them into a single Queue<int> , sorted from smallest (front) to
largest (back).

Step 1: Implement the merge routine!
Specifically, implement the Queue<int> merge(Queue <int> a, Queue <int> b) function, which
accepts two sorted queues of integers and returns a single sorted queue.

Hint: Think about dequeuing the first elements in each queue and comparing them – what can you
assert about the smaller element with respect to every other element in either queue?

A few notes:

1. We’d like you implement this iteratively, not recursively.

2. It is not guaranteed that your queue’s will be in sorted order. Although most queue’s will be, you
are responsible for throwing an error if you encounter an element that is out of order

• To do this, you could either attempt to verify both queues are sorted before you merge, or you could
attempt to verify this during the merge. The latter is more efficient, but we think the former is more
straightforward!

3. Be sure to account for the fact that you will often be merging queue’s A and B that have different
lengths!

Step 2: Implement Multiway Merge
Now it’s time to harness the power of recursion to sort like a pro!

You will implement the function Queue<int> multiMerge(Vector<Queue<int>>& all),
which recursively splits all in half and merges the split halves. The handout tells you
to proceed as so:

1.Divide the input collection of k sequences into two halves. The "left" half is the
first K/2 sequences in the vector, and the "right" half is the rest of the sequences.

•The Vector subList operation can be used to subdivide a Vector, which you
may find helpful.

2.Recursively apply the multiway merge to the "left" half of the sequences to
generate one combined sequence. Repeat the same process with the "right" half of
the sequences, generating a second combined, sorted sequence.

3.Use your binary merge function to join the two combined sequences into the
final result, which is then returned.

That’s it! A surprisingly simple algorithm with incredibly fast results!

Remember to test this function rigorously. What should you do with the empty
vector, for example?

Questions about merge?

xkcd

Part 3: Boggle Computer Search
Who played Boggle?

Part 3: Boggle Computer Search
In this part, you’ll be asked to write the functionality for a computerized Boggle player, who
uses a Lexicon and recursion to find every possible word on the Boggle board!

More specifically, you’ll be implementing 2 functions:

int points(string str)

Which returns the number of points awarded for string “str”, and

int scoreBoard(Grid<char>& board, Lexicon& lex)

Which returns the maximum possible Boggle score (int) given the board.

Part 3: Boggle Computer Search
In order to compute the maximum score, you’re going to use
recursive backtracking. More specifically, you’re going to
need to examine every square in the Boggle board and find
all words starting on that square.

One such example is on the right: if we’re starting at ‘P’, we
can find some words by examining all of our neighbors: if
appending a neighbor’s character leaves you with a valid
prefix, repeat the exploration process, starting on that
neighbor. If at any time your current string happens to be a
valid word, be sure that you keep track of the points you
earn!

Be sure that you’re not looking at places you’ve already
been! If your string is ‘pe’ and you’re looking for neighbors,
don’t consider ‘p’ again!

Part 3: Boggle Computer Search
A few more notes:
• For scoring, a word must be at least 4 letters long. From there, the [length : score] relationship looks like

this: [4:1], [5:2], [6:3], [7:4] and so on!

• We’ve only given you these two functions. Do you have enough variables to solve this problem, or will
you need a helper function?

• You can only examine adjacent cubes. That’s just Boggle, I guess.

• For scoring, words are unique. This means that if a word exists multiple times on the board, its score will
only count once in your point total.

• When you find a word, do you want to end your search?

Part 3: Boggle Computer Search
A few hints:
• The GridLocation struct from A2 maze may very well come in handy here.

• When needing to keep track of things like visited locations, I find the HashSet to be a great data structure.

• Don’t sleep on the .inBounds() function in the Grid class!

• ^^ The same about the .containsPrefix() function for Lexicon’s! If you don’t prune your decision tree, you’re
going to be taking too long (scoring a board should take less than a second!)

• Get used to the double for loop syntax for the Grid. One way of accessing elements in a Grid while also
knowing your coordinates (helpful if you’re using GridLocation’s) is this:

for (int r = 0; r < board.numRows(); r++) {

for (int c = 0; c < board.numCols(); c++) { // har.

char boggleLetter = board[r][c];

}

}

//Could you use something like this to look at your neighbors too? I wonder…

Questions about Boggle?

Part 4: Banzhaf Power Index
In this final part, you will answer the age-old question: do all votes count equally?

In this final part, instead of looking at individual voters, we’re going to look at voting blocks, which are
groups that have associated block counts, indicating their voting power. In order to pass any given vote,
blocks can form coalitions, namely, any possible subset of the blocks, to vote in favor of something.

A vote count over the strict majority (TOTAL / 2 + 1) indicates a win!

Lions
Tigers

Bears

Vote power: 99 Vote power: 1

Part 4: Banzhaf Power Index
More specifically, given a Vector of constituent groups called “blocks”, each with their own share
of total votes, compute the Banzhaf Power Index, which expresses a block's voting power as the
percentage of situations in which this block is a critical voter (i.e. if they were not in a particular
voting coalition, would said coalition fail to attain a strict majority of all votes).

All coalitions are: { { L, T, B }, {L, T}, {L , B}, {T, B}, {L} , {T}, {B}, {} }

Winning coalitions: { { L, T, B }, {L, T}, {L , B} }

Part 4: Banzhaf Power Index
Let’s take a closer look at these pictures and our approach:

1. We’re given 3 blocks, codified as a Vector<int>. For each block, determine how many critical
votes it has (we’ll discuss this algorithm in depth on the next slide). A critical vote is one that
would sway an election: the participation of the block in question would determine the outcome
of the race in either direction.

2. Once we have a collection of each block’s critical vote count, we want to divide each block’s
critical vote count by the total number of critical votes and multiply that by 100 to get a
percentage share of critical votes. That’s the Banzhaf Power Index!

Part 4: Banzhaf Power Index
Let’s talk a little more about finding a block’s critical vote count. In a nutshell, what you want to
do is, for each block, count the number of times that its vote would swing an election.

In other words, can you use recursion to

1. Generate all possible voting coalitions without the specified block, and then

2. For each generated coalition whose total vote count is less than the strict majority, see if
adding the specified block’s vote count would push the coalition’s vote count above the strict
majority. (Don’t consider coalitions whose vote counts are higher – adding our vote wouldn't
sway anything!)

This is not an easy ask, so we’re going to explore it in more depth in the next slide!

Part 4: Banzhaf Power Index
In order to generate the aforementioned hypothetical coalitions, you should consider a recursive
algorithm to generate subsets. This function will return the number of critical votes a particular
block has.

1. Take your block out of the mix before you do anything (you could leave yourself in, but remember
you want to generate these coalitions without your votes).

2. For each remaining block in the set (no loops, just recursion ☺), you want to return the number of
critical votes you would receive if you included it and excluded it in the coalition. These are two
separate recursive calls, and making them both will ensure that you account for all possible coalition
subsets.

3. In order to do this ^ you’ll need to keep track of the number of votes generated by a particular
coalition (probably as a parameter). If this number goes over the strict majority, you should
probably return 0 – your vote will not be a critical vote in this scenario.

4. Whenever you’ve run out of remaining blocks to consider including or excluding, it means that you
have constructed enough votes to represent one of the hypothetical coalitions (sort of like your
“done” base case). At this point, check if adding your block’s votes to the coalition’s votes would
push you over the strict majority. If so, return 1!! You’ve found a scenario in which you provided the
critical vote!

Part 4: Banzhaf Power Index
Some implementation notes:
• For the purposes of this problem, only a strict majority (>= TotalVotes / 2 + 1) will win an election. Ties

are losses in this cruel, cruel world.

• When you’re trying to actually find the index, recall that you’re going to be dividing integers (critical
votes for a block / total critical votes). Casting one of these two as a (double) should avoid any
truncation issues.

• It’s very important that you follow the aforementioned subset algorithm on this problem. I tried to
implement a solution using a literal subset generation algorithm (one that creates a
Vector<Vector<int>>, literally containing all subsets), instead of using the cheeky and friendly integer-
oriented algorithm described before. I literally allocated so much memory that I blew out my heap – if
your program crashes on the EU test with the error bad_alloc(), it means that you’re using data
structures where you shouldn’t be!

• The recursive function you have to write here is tricky – be sure to write tests for it individually. If you
can verify that it is correctly returning the number of critical votes for a given block, the problem is
basically complete!

• Read the handout carefully on this one. It’s trickier than the others, so be sure to be extra careful!

Any questions?

Student-Test, CS106B alum
and unit-testing pro

block

