
YEAH Hours A6 – Linked Lists

The pointers you know and love just got better!

Let’s talk linked lists!

• A Linked List is simply a series of structs that are chained together

using pointers.

• The specific list node that you interact with varies from project to

project – sometimes you’ll be working with quite sophisticated linked

lists!

• One example of this is a doubly linked list, a list where nodes store pointers to

both the next and the previous nodes!

Before we start: questions about Linked Lists?

Look! A Linked Liszt!

What you’ll need to do:

1. The Labyrinth

• Using your pointer prowess, can you escape a twisty memory

labyrinth?

2. Linked List warmups

• Linked lists are hard. Here’s why!

3. Sorting with Linked Lists!

• Can you implement a classic sorting algorithm with a linked list?

The Labyrinth

• Imagine that you’re placed in

a labyrinth like the one on the

right. In order to escape, you

need to collect (up to) three

magical items: a book, a

wand and a potion.

• The labyrinth is constructed as

a linked list with four

connections, one in each of

the cardinal directions.

The Labyrinth

• More specifically, the labyrinth is a linked list of MazeCell structs. Each cell has four

MazeCell neighbors and a string that may or may not contain one of the

enchanted items!

The Labyrinth

You will need to write the following function:

bool isPathToFreedom(MazeCell *start, string path, Set<string> needed)

where start represents the initial MazeCell, path is a string consisting of
characters ‘N’, ‘S’, ‘E’, ‘W’, and needed is a set of magic items that you need
to escape the maze.

• For example, start could be any MazeCell *, path could look like
“NSWWENEWSNEWSENNSNES”, and needed could just contain “Wand”

• You will read a character at a time off the string and advance to the MazeCell
dictated by the character (‘N’ --> curr = cur->north)

• Along the way, if any cells contain magic items, pick them up!

The Labyrinth

Some notes about isPathToFreedom()

• Not all MazeCells have 4 valid pointers. Walls in this world are determined by
null pointers. If the following is true:

if (curr->north == nullptr) { … }

then there exists a wall above your current location. If a path tells you to move
into a wall, you should return false to signify that no escape was possible.

• You don’t necessarily need all 3 magical items to escape – just however many are in
‘needed’ at the very beginning. You might find that you only need 1 or 0 items!

• In a similar vein, you might find that you have all the items you need well before you’ve exhausted
the path – that’s okay

• It is possible that you encounter invalid characters in your path string. If you do,
throw an error to signify an invalid path.

The Labyrinth

A few more notes:

• Please use iteration and not recursion. Although your recursive gears might be

grinding, we don’t want to create tons of stack frames here.

• The path you are given may have you visiting the same cell twice. This is okay, and

you don’t need to detect it.

• Do not allocate any new MazeCell structs with the new keyword. You shouldn't need

to, but thought I should get that out there…

• The order of the items claimed doesn’t matter.

Questions about isPathToFreedom?

I don’t really get this one but it’s
topical, and we won’t ask any
questions that are too tricky ☺

Labyrinth part II: Escape!

• Now it’s time for you to escape from your own labyrinth! You’ll use the function

you’ve just written to escape from a labyrinth personalized to you! At the top of your

labyrinth.cpp file, enter your name as the value of the constant kYourName.

• Now scroll down to the final test case in the file. Set a breakpoint somewhere in this

test and fire up the debugger!

Labyrinth part II: Escape!

• When you fire up the debugger, you’ll find yourself with a debugger pane on the right that looks
something like this:

Doesn’t look like there are magical items at my starting point, rats! Looks like I’ll need to examine my
neighbors! In this case, there are walls all around, so I can only look north. Let’s click on it and see
what we can find.

Disclaimer: These were taken from my crappy windows
machine. Not sure if they’ll be 100% identical on mac (or
linux if you’re into that sort of thing)

Labyrinth part II: Escape!

• When you fire up the debugger, you’ll find yourself with a debugger pane on the right that looks
something like this:

Doesn’t look like there are magical items at my starting point, rats! Looks like I’ll need to examine my
neighbors! In this case, there are walls all around, so I can only look north. Let’s click on it and see
what we can find.

Disclaimer: These were taken from my crappy windows
machine. Not sure if they’ll be 100% identical on mac (or
linux if you’re into that sort of thing)

Labyrinth part II: Escape!

• Nothing here either? Double rats! From here, you can keep poking around the debugger. We

highly recommend drawing out a picture of your labyrinth. For every location you

examine, mark it in your picture, including any items that might be there! If you don’t

do this, remembering the correct path to find all 3 items will be very difficult.

This is the contents of our northern
neighbor! Watch out! It’s easy for this
window to get cluttered quickly!

Labyrinth part II: Escape!

• Eventually, you’ll find an item, huzzah! Once

you’ve found all 3, refer to your drawing,

and construct a path, from the start location,

of the series of steps needed to pick up all 3

items. Denote each step as a character, (‘N’ -

> North), and when you’re convinced you

have a correct path string, set the constant

kPathOutOfNormalMaze to your result

string. Then run in non-debug mode and

voila, you’re out of the maze!

Labyrinth part II: Escape!

Some notes about the question:

• If you change the kYourName constant, you’ll get a brand new maze, so keep that in
mind if you have to change the name!

• Beware that the labyrinths you are given may have cycles in them, and paths may
one be uni-directional! Check the addresses of the neighbor pointers to see if they
match an above neighbor! If they do, you might be going in a circle!

Not sure I’d call this a cycle, but you can see that the address

Is repeated in 2 places!

Questions about Labyrinth Escape?

escape
from

NNNSWESENW
ENSSNEWNEW
NSSNEWNSNEN

Part II: Debugging Warmups

• In this part, you will use the simple test framework to detect memory leaks!

• The TRACK_ALLOCATIONS_OF addendum in the ListNode struct definition will

automatically record the number of ListNodes that have been allocated and

deleted. If the numbers don’t match up at the end of the program, it’ll give you an

error!

Part II: Debugging Warmups

• You will be running some programs in warmup.cpp that contain various memory

errors relating to linked lists. In the process of observing them, you’ll learn that

some errors are quite noticeable, but others are virtually imperceptible without

some help. Spooky!

• In this part, you’ll see memory leaks, use-after-free errors, and segmentation

faults! Don’t worry, you’re ready to face them all!

Part III: Sorting with Linked Lists

• It’s time for your big challenge! For this final part, you are tasked with implementing

either mergesort or quicksort using a linked list instead of an array!

• You only need to do one! If you do both, you’ll get ~extra credit~

• Let’s talk about mergesort first!

MergeSort Case Study

• Let’s say that you want to perform MergeSort on this here

list.

5 -3 0 8 2

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements in

an alternating fashion:

5 -3 0 8 2

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements in

an alternating fashion:

5 -3 0 8 2

List #1

List #2

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements in

an alternating fashion:

5

-3

0

8

2

List #1

List #2

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements

in an alternating fashion:

• Step 2: Once you have these sublists, you’ll want to recursively split these lists.

Think back to Multiway Merge! Feeling nostalgic?

5

-3

0

8

2

List #1

List #2

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements

in an alternating fashion:

• Step 2: Once you have these sublists, you’ll want to recursively split these lists.

Think back to Multiway Merge! Feeling nostalgic?

5 -30 82

-3 82 05

Notice how the order changed here – when we split
our list we need to choose alternating elements!

MergeSort Case Study

5 -30 82

-3 8025

5 2

MergeSort Case Study

5 -30 82

-3 8025

5 2

The green nodes here have all been split down to
base-case level!

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

2 5

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

2 5

Can you tell I’m running
out of space ☺

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

2 5

-3 80 52

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

2 5

-3 80 52

MergeSort Case Study
Step 3: Merge time!
(in order!) -3 80

5 2

2 5

-3 80 52

-3 20 5 8
Done!

MergeSort Case Study

• Step 1: Split this list into two linked lists. To do so, you must distribute elements

in an alternating fashion:

• Step 2: Once you have these sublists, you’ll want to recursively split these lists.

Think back to Multiway Merge! Feeling nostalgic?

• Step 3: Finally, you’ll want to merge the result of your mergesort calls on list 1 and

list 2.

• This is very similar to the merge in Multiway – you can assume that the lists you are merging are

sorted, because, by starting by merging single elements, you will always be creating sorted sublists!

Part III: Sorting with Linked Lists

Some tips / tricks for MergeSort

• You’re not given much to go off for this part. If you’re confused about how to start this one,
looking at Multiway Merge would be a good idea. The structure of the algorithm is virtually
the same, just swap Vectors and Queues for Linked Lists.

• I found that writing helper functions like printList() and listToVector() were really helpful for
debugging and testing purposes. Because MergeSort has many steps, being able to verify
that an individual part works can be crucial!

• On that note, we don’t provide ANY functionality tests for this part. It’s up to you to write a barrage of tests
to verify the robustness of your sort. Once again, listToVector() will be helpful here in order to compare your
sorting algorithm to the built-in vector.sort() algorithm.

• This goes without saying, but decomposition is crucial here. You need to be able to test your
merge and divide routines separately in order for this assignment to be manageable. If you
don’t test incrementally, it will be very hard to tell where your bugs are coming from!

Part III: Sorting with Linked Lists

Things to watch out for:

• Although you may end up calling your MergeSort function recursively, the routine for

dividing a list into two sublists must be done iteratively, and so must the merge function.

• Because of recursion’s stack-frame-intensive nature, we don’t want you to blow out your stack on a simple sort!

• You are not allowed to add or remove any ListNodes. The sorting must be done by rewiring

nodes only! You may not modify the “data” field in the ListNode.

• This might go without saying, but you are not allowed to use data structures like Vectors or

Stacks in your implementation.

• Vectors may be very very very helpful for debugging, however!

• Segmentation faults. I’ll just leave this here…

Questions about MergeSort?

In case anyone wanted to thank_you->next

QuickSort Case Study

• Let’s talk about Quicksort! Although you may be less familiar with QuickSort as an

algorithm, I actually found it slightly easier to implement. This may not be true for

you all, given that you just implemented Multiway Merge, but I do believe the code

for QuickSort is a little less hairy.

• Let’s jump in!

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

How pivotal!

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5 0 -3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

0 -3 8 2

RightList

Middle

LeftList

5

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0

-3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8

2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8

2

RightList

Middle

LeftList ho hum, we’ve chosen a shoddy pivot.
Want to learn how to choose a great
pivot while not burning the efficiency
books? Take CS161!

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

The right and the middle are already at size 1!

RightList

Middle

LeftList

0 -3 2

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

How pivotal!

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

#1

#2

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

#1

#2

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5

8

RightList

Middle

LeftList

0-3 2 This is sorted now!

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5

8

RightList

Middle

LeftList

0-3 2

#2

#1

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5 80-3 2
Done!

Part III: Sorting with Linked Lists

Some tips / tricks about QuickSort

• For those of you who do both, I found that the logic (code) for splitting into lists for both
MergeSort and QuickSort were very similar (the actual splicing code was the same
really!)

• The merge is very simple – just rewire the end of LeftList to point to the MiddleList, and
rewire the end of MiddleList to point to RightList.

• Beware that these lists can be empty at merge time – this will cause problems in your code!!

• The general structure of “calling the function recursively and joining the result” is the
same between the two sorts! I think QuickSort is a more interesting challenge.

• Do not call QuickSort on the middle list! It’s just a waste of time, and it can do strange
things if not handled / avoided.

Part III: Sorting with Linked Lists

Some things to note:

• Everything that applied to the last problem applies here: no new nodes, no

changing the data field, and no data structures.

• There are still no correctness test cases, so be sure you write your own.

• As with MergeSort, your partition and join routines must be iterative. You may call

your QuickSort function recursively, however, and you probably will.

Questions about QuickSort?

Food for thought: can you think of a
comparative-based sorting algorithm that
runs in time faster than O(nlog(n))? Extra
credit if you can!

