YEAH

Assignment 1
Getting your C++ Legs

Welcome to YEAH

% Your Early Assignment Help!

¢ Conceived many moons ago to give students a boost when starting assignments
early

& Have also proved to be helpful for students starting later!

& We’'ll review the assignment, and I'll give helpful hints / tips — please ask
questions!

& If you can (and are not a minor) please come to the live session!

Welcome to YEAH

® What | can do:

¢ Clarify funkiness (or try my best to do so) on the handout
¢ Give important insight / highlight common pitfalls on the assignment

& Memes
¢ What | can’t do:

& Answer questions like “How exactly do | implement this?”

& Fly

Today's Agenda

1. Assignment logistics
2. Part |: Perfect Numbers

3. Part ll: Soundex

Assignment 1 Logistics

& Due Tuesday, June 30, 11:59PM (in your local time zone!)

¢ This is in 6 days from now! Better get cracking!

¢ The grace period for this assignment is 24 hours — late submissions will be
accepted until June 31st, 11:59PM.

¢ You must complete this assignment individually. Please read more about
what kinds of collaboration are and are not permitted on the course website.

Any Questions About Logistics?

Part 1: Perfect Numbers

¢ A warmup program to get your cpp bearings. You’ll write an efficient
algorithm that finds perfect numbers!

& A perfect number is a number whose factors add to the number!
©®6=1+2+3; 28=1+2+4+7+14

¢ 2 fundamental pieces, coding and short answer.

¢ Designed to complement each other and help your understanding!

Euclid discovered a pretty cool
relationship about perfect numbers...
we’ll come back to this.

Part 1: Perfect Numbers

& The first thing that you’ll do in this assignment is examine a pre-written

algorithm that finds perfect numbers.

void findPerfects(long stop)
{
for (long num = 1; num < stop; num++) {
if (isPerfect(num)) {
cout << "Found perfect number: " << num << endl;
}
if (num %) cout << "." << flush;

3

cout << "Done searching up to " << stop << endl;

long divisorSum(long n) {
long total =
for (long divisor = 1; divisor < n; divisor++) {
if (n % divisor == 0) {
total += divisor;
1
1

return total;

bool isPerfect (long n) {
return (n !'= 0) & (n == divisorSum(n));

3

Part 1: Perfect Numbers

& isPerfect() calls a routine called divisorSum(). This approach is called an
Exhaustive Algorithm. These algorithms attempt to find solutions by doing
all computations without optimizations.

// Return sum of all divisors of n, excluding self
long divisorSum(long n)

{
long total = 0;

for (long divisor = 1; divisor < n; divisor++) {

if (n % divisor == 0) {
total += divisor;
}
}

return total;

Part 1: Perfect Numbers

& Exhaustive algorithms get the job done, but they’re not the fastest. We can
do better!

& But first, it’s time for...

Kanye StudentTest’s Testing Overview!

That that don't ™ can only

computer

make me stronger.

— Kaenye Sfedent-Test, CS106B

alum and unit-testing pro

AZ QUOTES

Running Tests in CS1068

¢ An important part of CS106B is testing, the ability to write small pieces of
functionality that you can test.

& There are 4 functions you’ll be frequently using this quarter, TIME_OPERATION,
EXPECT, EXPECT_EQUAL, and EXPECT_ERROR.

¢ You will create STUDENT_TESTs and use TIME_OPERATION, EXPECT,
EXPECT_EQUAL, and EXPET_ERROR to verify the correctness of your functions!

& TIME_OPERATION (inputsize, operation) function call times how long it takes to
perform function OPERATION on INPUTSIZE elements, and reports these numbers
to the console.

& Check out the use of the EXPECT functions use on the next slide!

Running Tests in CS1068

int returnFive (int num) {
if (num == -1) error ("Error, cannot process -1!");
return 5;

}

// EXPECT tests the provided predicate.

STUDENT _TEST ("Verifies that returnFive returns five with EXPECT") {
EXPECT (returnFive (©) == 5);

}

// EXPECT_EQUAL compares two values.

STUDENT_TEST ("Verifies that returnFive returns five with EXPECT_EQUAL"™) {
EXPECT_EQUAL (returnFive (@), 5);

}

// EXPECT_ERROR passes if and only if the code it runs throws an error.

STUDENT _TEST ("Verifies that returnFive throws an error on bad input with EXPECT_ERROR") {
EXPECT_ERROR (returnFive (-1));

Questions about testing?

int returnFive (int num) {
if (num == -1) error ("Error, cannot process -1!");
return 5;

}

// EXPECT tests the provided predicate.

STUDENT _TEST ("Verifies that returnFive returns five with EXPECT") {
EXPECT (returnFive (©) == 5);

}

// EXPECT_EQUAL compares two values.

STUDENT_TEST ("Verifies that returnFive returns five with EXPECT_EQUAL"™) {
EXPECT_EQUAL (returnFive (@), 5);

}

// EXPECT_ERROR passes if and only if the code it runs throws an error.

STUDENT _TEST ("Verifies that returnFive throws an error on bad input with EXPECT_ERROR") {
EXPECT_ERROR (returnFive (-1));

Back to our algorithm!

Can we do better?

& After you write some tests for the existing code, your next step will be to
improve the perfect number-finding algorithm!

& In its current state, the helper function that computes the sum of all divisors of a
number loops through all values between 1 and n - 1.

// Return sum of all divisors of n, excluding self
long divisorSum(long n)

{
long total = 0;

for (long divisor = 1; divisor < nj; divisor++) {

if (n % divisor == 0) {
total += divisor;
}
}

return total;

Can we do better?

& It turns out, we only have to loop through numbers 1 -> sqrt(n) to get all
divisors of n!

¢ Ex. For the number 6, who has perfect factors 1, 2, and 3, we only need to
consider 1 and 2 (or 1 -> sqrt(6)); we can get the complementary factor via (n
| divisor) ->3 =6/ 2.

& Ex. 28 -> [1], [2 AND 28 / 2], [4 AND 28 / 4]

¢ Suddenly, our work has gone from (n) computations to (sqgrt(n))
computations. Nice job!

Speed Racer
giving you a
thumbs-up!

SmarterSum

& You’re going to write this into a program called smarterSum() that has the
same functionality as divisorSum, but only loops through sqrt(n) numbers!

® Some tips/tricks

¢ There are a number of edge cases to consider now that you’re not examining all
numbers. Think about how you might handle negative values on n, O, 1, or
square roots! This is the kind of thinking that you should always have when
testing your code!

Questions about smarterSum?

Mersenne Primes

¢ A Mersenne Prime is a special prime number that is one less than a power
of two.

® 31=2°5-1.
% Euclid discovered a cool property of these numbers:
& If 2"k — 1 is prime, then 2*(k - 1) * (2*k - 1) is a perfect number!

& Can we make our perfect number algorithm even better?

findNthPerfectEuclid

& You’re going to use Euclid’s discovery to write a routine that finds the nth
perfect number. More specifically, you’ll be implementing the function

long findNthPerfectEuclid(long n)

that returns a long signifying the perfect number of order n.

findNthPerfectEuclid

& Here’s how we’d like you to approach this problem:
1. Start by setting a variable k = 1
2. Calculate m = 22k — 1 (use cpp library pow() function!)

3. Determine whether m is prime or composite (write an isPrime function that loops
through possible divisors!)

4. If mis prime, (it’s a Mersenne Primel!!) calculate 22k - 1) * (2*k - 1). This is the
associated perfect number!

5. Increment k and repeat until you’ve found the nth perfect number!

(I'll wait here for a second ©)

findNthPerfectEuclid

& A few things you should know:

& We're using long instead of int here because these numbers can get really big!

& If you’re on a windows machine, you won'’t be able to find perfect numbers
greater than ~6, but on mac you can find a few more!

& Want to know why? Take CS107, or look up 32bit vs 64bit architectures!

Questions about findNthPerfectEuclid?

HOoW Dt’.?' YOU K]‘r_'.l\,-.." \ Redacted 2 —
| proouer (Pusowg)'s | | QED. MEEEE

NUI"IEEEEC"I'—' PRH”"LE‘:-" FACTORS ARE ..

T ANYJER
N HF‘IrI-«.L)|

WOW, AFTER THE H4-HOUIR,
CE = SLEEP-DEP MARK, LECTURES
i GET FEALLY \NTERESTING,

source, xkcd

That's Part |!

& Congrats! You made it past part |. Now it’s time to do the big one!

source, google images

Part |I, Soundex Search

& In this final part, you’ll be writing an algorithm that takes a last name and
turns it into a soundex code, which is a 4-digit pseudo-phonetic
representation of a last name.

¢ | say pseudo-phonetic because the soundex algorithm we’re going to use is
pretty crappy, and it doesn’t account for most pronounciations.

¢ That being said, the US census uses soundex codes! Wonder what that says
about our language tolerance ®

Soundex()

® Here are some examples of soundex conversions:
& Zelenski -> Z452

& Lee -> L00O (see what | mean?)

Digit represents the letters

Soundex()

AEIOUHWY
& The good news is, the string soundex (string s)
routine is actually pretty straightforward. Here are the BFPV
steps!

1. Discard all non-letters from the name. The isalpha()
function will help with this! CGJKQSXZ

2. Save the first letter of the name, and convert to DT
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

L

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

¢ Let’s see an example with Zelenski!

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to ZelensKki
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to ZelensKki
uppercase if necessary.

3. Encode all letters using the depicted table. 20405220

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to ZelensKki
uppercase if necessary.

3. Encode all letters using the depicted table. 20405220

4. Coalesce adjacent duplicate numbers (222025 2040520

would become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to Zelenski
uppercase if necessary.

3. Encode all letters using the depicted table. 20405220

4. Coalesce adjacent duplicate numbers (222025 . 2040520
would become 2025)

5. Replace the first number of the encoding with the 7040520

saved first letter of the name.
6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to Zelenski
uppercase if necessary.

3. Encode all letters using the depicted table. 20405220

4. Coalesce adjacent duplicate numbers (222025 2040520
would become 2025)

5. Replace the first number of the encoding with the 7040520
saved first letter of the name.

6. Remove ALL zeroes from the code. /452

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()

& The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The isalpha() Zelenski
function will help with this!

2. Save the first letter of the name, and convert to Zelenski
uppercase if necessary.

3. Encode all letters using the depicted table. 20405220

4. Coalesce adjacent duplicate numbers (222025 2040520
would become 2025)

5. Replace the first number of the encoding with the 7040520
saved first letter of the name.

6. Remove ALL zeroes from the code. 7452

7. Format to length 4 by either truncating the code or 7459 V
padding zeroes at the end. Done!

Soundex()

& You'll implement this routine in the string soundex(string s) routine. You'll
take a surname as a string and return the associated soundex code!

¢ To do this, please decompose! The aforementioned steps can each be their own
functions, and that way you’ll be able to write tests for each helper function
you write!

& If you are able to test your helper functions, it will be much easier to pinpoint
potential bugs in your program!

Soundex()

® Here are some tips for Soundex()

& You'll be doing lots of work with strings and chars here. Know how to index into a
string (like str[i]), but be wary that strings and chars are different types!

¢ Strings use “double quotes” and chars use ‘s’ingle quotes.

¢ In case you need to convert between the two, strlib.h includes conversion functions!
¢ When converting chars to soundex numbers, ensure that your code is case insensitive!

¢ If you ever need to convert a char to upper case, the int toupper(int c) function in
<cctype> will return the uppercase version of the char you pass in.

& wait... why does int toupper(int c¢) deal with integers then....

It’s time for. ..

Charole Baskin’s brief foray into char
representation via the ASCI| set!

-Charole Baskin, 106B alum
and mariticide suspect

How do we represent characters?

& Let’s face it, there are a lot of unique chars out there. When you couple that
with the existence of fonts™, you get a data representation nightmare — how
do you represent chars?

¢ The computing world decided to get together to create a standard number
representation for popular chars (128 of them!). Each char would
correspond to an integer in a table called the ASCII set.

& For example, ‘A’ -> 65, and ‘a’ -> 97.

*leave a comment if you know what
font this is!

What does this code print?

string s = "apple";

cout << toupper(s[0]) << endl;

How do we represent characters?

& You need to be careful that you’re not working directly with integers when
you work with characters!

¢ If a function returns an int, be sure you’re storing the data as a character so
that it can be read properly!

string s = "apple";
char firstLetter = toupper(s[0]);

cout << firstlLetter << endl;

Soundex()

& Questions about soundex?

& Please remember to decompose the steps on this one ©

T HATE WHEN T DONT | | DO YOU, RACHEL,
KNOW SOMEONES NAME, | | TAKE THIS MAN...
BUT IT'S BEEN LONG

ENOYGH THAT IT'S
TOO AWKWARD TO ASK.

source, xkcd, depicting
me in a few years — I'm
terrible with names

Soundex Search

& Now it’s time to put your soundex function to the test! You will write the
function void soundexSearch(string filePath), that allows the user to find
the soundex code for a given name, along with other names in the database
represented by the filename filePath with the same soundex code.

& Your interaction with the user should match this exactly:

Read file res/surnames.txt, 26409 names found. ThIS |ine iS done for
, , you ©

Enter a surname (RETURN to quit): Zelenski

Soundex code is 7452

Matches from database: {"Zelenski", "Zelnick", "Zelnik", "Zelnis", "Zielonka"}

Enter a surname (RETURN to quit): troccoli

Soundex code is T624

Matches from database: {"Therkelsen", "Torkelson", "Trakul", "Traxler", "Trisal", "Troc
coli", "Trockel", "Troxel", "Troxell", "Trujillo", "Turkel"}

Enter a surname (RETURN to quit):
All done!

Soundex Search

¢ You’ve already been provided with the code that reads the provided file into
a vector. If you’re not familiar, a vector is like a Java ArrayList or a python
List: we use it to store things!

& Here, the vector lines stores all names from the file!

void soundexSearch(string filepath)
{
// The proivded code opens the file with the given name
// and then reads the lines of that file into a vector.
ifstream 1n;
Vector<string> lines;

if (openFile(in, filepath)) {
readEntireFile(in, lines);

}

cout << "Read file " << filepath << ", " << Tlines.size() << " names found." << endl;

Soundex Search

¢ You’ll need to repeatedly prompt the user for a name (think while loop!)
& If the user enters empty string, (return) break out of the loop!

& Once you get a string, compute and print its soundex code!

& Then, loop through the vector of strings, compute the soundex for each line,
and store any whose soundex match yours into a new vector, which you will
print after you,ve found a” matCheS! Read file res/surnames.txt, 26409 names found.

Enter a surname (RETURN to quit): Zelenski
Soundex code is 7452
Matches from database: {"Zelenski", "Zelnick", "Zelnik", "Zelnis", "Zielonka"}

Enter a surname (RETURN to quit): troccoli

Soundex code is T624
Matches from database: {"Therkelsen", "Torkelson", "Trakul", "Traxler", "Trisal", "Troc
coli", "Trockel", "Troxel", "Troxell", "Trujillo", "Turkel"}

Enter a surname (RETURN to quit):
All done!

Vector Semantics

Vector<string> names;

// Append to a vector
names += "Trip";
string str = "Kylie";
names.add(str);

// index-based for loop!
for (int i = @; 1 < names.size(); i++) {
string name = names [i];

// for-each loop!
for (string name : names) {

Soundex Search

& A few tips / tricks:

& Use the getline() function from “simpio.h” to get user input!

¢ You need to sort the names in the vector alphabetically. No need to fuss; before
you print the vector, simply call vector_name.sort() (sorts in place)

¢ You can cout vectors just like strings, and they’ll present themselves like you see
In the example!

¢ Give “Stanford string cpp” a google and take a foray through the Stanford cpp
library for strings. There are some really helpful functions out therel!

Questions About Soundex Search?

