

Questions about logistics?

Wwarmups

aigh forward
-
o / to complete

. “/
\{e|
jer ¢

the assignment.

Warmup 1: Observing ADT’s in the
Debugger

 For the first part, you’ll void reverse(Queue<int>& q) {
examine the followmg Stack<int> s;
function: while (iq.isEmpty()) {

» This function is already int val = qg.dequeue();
implemented for you, and s.push(val);
you’ll be using the debugger }
to step through it! while (ls.isEmpty()) {

- To view the internals, put a int val = s.pop();
breakpoint on the first line of q.enqueue(val);

the function and run the
program in the debugger!

Warmup 1: Observing ADT’s in the

Debugger

 When you run the warmup tests,
you'’ll see a window pop up in the
top right corner of your debugger.

» Inside you’ll see the names of the
variables in your function! You can

expand them via the arrows on the
left!

» As you can see, you can peek into
the queue at runtime! As you step
thru the debugger, you can watch
these values change in real time!

Name

"q
» [vptr]
- _elements
» [vptr]
- _elements

(0]
(1]
(2]
3]
»_version
» sunetid

Value

@Ox7fffcd510

_vptr.Queue

@O0x7fffcd510...

_vptr.Deque
<4 items>

3

9

1

6

@Ox7fFFcd510...

n a b by"

Deque<int>

std::dequ...
int

int

int

int
stanfordc...
std::string

There’s some
scary stuff here
0. Don’t worry
about it just yet,
we’ll talk about it
in a few weeks!

Warmup 2: Debugging an ADT question

 For this next part, you’re

going to use your new
debugging skills to debug this

function:

 Step through the function for a
few iterations and determine

where things go wrong!

void duplicateNegatives(Queue<int>& q) {
for (int i = @; 1 < g.size(); i++) {

int cur = g.dequeue();

g.enqueue(cur);
if (cur < 0) {
g.enqueue(cur) ;

// double up on negative numbers

Warmup 3: Debugging an Error

 For the final warmup, you’ll
be debugging the following
function:

* This function raises an error,
meaning during runtime, it
encounters a problem and
terminates!

* The problem is, you’re not
allowed to modify a data
structure while you loop thru
it with a for each loop.

void removeMatchPairs(Map<string, string>& map) {
for (string key: map) {
if (mapl[key] == key) {
map.remove (key) ;

Warmup 3: Debugging an Error

* You’ll need to step thru this
function in the debugger to

determine exactly where it void removeMatchPairs(Map<string, string>& map) {
throws the error! for (string key: map) {
. . if (mapl[key] == key) {
* Pro tip: remember this error map. remove (key) ;

for later - if you’re looping
thru some data, don’t modify
it. If the code doesn’t crash,
it’ll usually give you strange
and incorrect behavior.

Part I: Maze

« Welcome to the first coding
part of the assignment!

* You’ll be working with a mazes
like the one to your right -
these mazes will start in the
top left and have exits in the
bottom right.

Part I: Maze

* Let’s talk a little more about
these mazes:

 The maze itself is actually
represented as a Grid<bool> in
your program, where a cell
marked true is an open corridor
and a cell marked false is a wall.

« mazeGrid[row][col] returns a
Boolean that indicates whether
{row, col} are the coordinates of
a wall or a corridor!

rih

Part I: Maze

» Where do these Grid<bool>

come from?
« Great question, rhetorical
viewer. Mazes are provided to

you in the starter code as text
files.

« We’ve provided you the function

void readMazeFile(string filename, Grid<bool>& maze) {

that reads in a text file like the
one on the right and converts it
into a Grid<bool>. We use ‘@’ to
represent walls and ‘-’ to
represent corridors.

Part I: Maze
GridLocations

* There’s a new abstraction
you’ll need to become
comfortable with using!

» A GridLocation represents a
pair of coordinates. You can
think of it like

{ row, col }

// You can create a GridlLocation by separately setting its row and col fields
GridLocation chosen;

chosen.row = 3; // separate assignment to row

chosen.col = 4; // then col

// Or you can create a GridlLocation by setting its row and col during initialization
GridLocation exit = { maze.numRows()-1, maze.numCols()-1 }; // last row, last col

// You can use GridlLocations to index into a Grid (maze is a Grid)

if (maze[chosenl]) // equivalent to maze[3][4]

// You can directly compare two GridlLocations

if (chosen == exit)

// You can also access and use a GridlLocation's row,col separately
if (chosen.row == 0 && chosen.col == 0)

Questions about the Grid<bool> or
GridLocations?

// You can create a GridlLocation by separately setting its row and col fields
GridLocation chosen;

chosen.row = 3; // separate assignment to row

chosen.col = 4; // then col

// Or you can create a GridlLocation by setting its row and col during initialization

GridLocation exit = { maze.numRows()-1, maze.numCols()-1 }; // last row, last col

// You can use GridlLocations to index into a Grid (maze is a Grid)
if (maze[chosen]) // equivalent to maze[3][4]

// You can directly compare two GridlLocations
if (chosen == exit)

// You can also access and use a GridlLocation's row,col separately
if (chosen.row && chosen.col == 0)

Part I: Maze

 How can we store a path in
our maze?

rih

Part I: Maze

 How can we store a path in
our maze?

« We can use a
Stack<GridLocation>

* In this case, the top of the stack
would represent the last visited
location (the exit in a complete
path!)

* The bottom would be the start of
the path, (typically the top left
corner).

Part I: Maze

« For some of the mazes we
provide for you, we also give
you the maze solutions stored
in a text file!

» Take a second to verify that
the locations below represent
a valid path out of the maze!

« The path reads left(start) to
right(end)

{roco, rocl, roc2, roc3, r0c4, roc5, roc6, ric6, r2c6, r3c6, r4c6}

Part I: Maze

« We’ve also written a function
for you that turns a solution
.txt file into a
Stack<GridLocation> called

void readSolutionFile(string filename, Stack<GridLocation>& soln) {

that you’ll need to fortify later
on!

{roco, rocl, roc2, roc3, r0c4, roc5, roc6, ric6, r2c6, r3c6, r4c6}

Questions about mazes, text files or data
structures?

{roco, rocl, roc2, roc3, r0c4, roc5, roc6, ric6, r2c6, r3c6, r4c6}

Part |I: Maze
generateValidMoves()

egin, yOU’re gOing tO Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
implement the following

~ function:

/ e This function takes in a maze
/‘ as well as a current location in
that maze.

* You are tasked with returning @ @

a set of valid neighbors

» These are locations one step
away in the (NSEW) directions

that are non-walls and in bounds! @

egin, yOU’re gOing tO Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
implement the following

~ function:

/ e This function takes in a maze
/‘ as well as a current location in
that maze.

* You are tasked with returning
a set of valid neighbors
» These are locations one step

away in the (NSEW) directions
that are non-walls and in bounds!

Part |I: Maze
generateValidMoves()

egin, yOU’re gOing tO Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
mplement the following
- function:

/- This function takes in a maze
/ as well as a current location in
that maze.

* You are tasked with returning
a set of valid neighbors
» These are locations one step

away in the (NSEW) directions
that are non-walls and in bounds!

|

Part |I: Maze
generateValidMoves()

/ Case yOU d return B Set<Gridlocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
// / r1dLocat10n> that
////

contained 2 things: the

&&\

v

\\\

,vcoordmates of the above

~ location and the coordinates
/ of the below location.

Part |I: Maze
generateValidMoves()

7 & . .

%é. generateValldMoveS(), Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
ou can use the Grid’s inbounds()

function to tell whether a

coordinate pair is within the

bounds of a grid.

» Be sure to add good tests for this
part - we specifically leave edge
cases out of the tests we provide
you.

* You need to generalize your
routine for validating a neighbor.
It is poor style to repeat the
process of validation 4 times -
once for each valid direction.

» Think about how you might use a
loop to fix this!

4

_&

Questions about generateValidMoves()?

Part |I: Maze
checkSolution()

» Let’s say now that you
generated a Grid<bool> and a
Stack<GridLocation>
representing a maze and a
solution, respectively, and
you wanted to verify that it
actually was the solution to a

MmaZe.
{r@co, rocl, roc2, roc3, roc4, roch, roc6, ric6, r2c6, r3cé, r4cé}

 How would you do it?

Part |I: Maze
checkSolution()

 Here’s the criteria for a valid
solution:

A path represents a valid solution through the maze if it meets the following criteria:

The path must start at the entry (upper left corner) of the maze. { 0,0}

The path must end at the exit (lower right corner) of the maze.{ maze.numRows() - 1,
Each location in the path is within the maze bounds. maze.numeols() - 1}

Each location in the path is an open corridor (not wall).
Each location is one cardinal step (N,S,E,W) from the next in path.

The path contains no loops, i.e. a location appears at most once in the path.

Part |I: Maze
checkSolution()

If you identify that any of these things is incorrect, you can raise an error
like this:

error("Here is my message about what has gone wrong");

A path represents a valid solution through the maze if it meets the following criteria:

The path must start at the entry (upper left corner) of the maze. {0,0}

The path must end at the exit (lower right corner) of the maze.{ maze.numRows() - 1,
Each location in the path is within the maze bounds. maze.numCols() -1}
Each location in the path is an open corridor (not wall).

Each location is one cardinal step (N,S,E,W) from the next in path.

The path contains no loops, i.e. a location appears at most once in the path.

Part |I: Maze
checkSolution()

* You’ll be implementing the following function:
void checkSolution(Grid<bool>& maze, Stack<GridLocation> path)

that verifies that PATH is contains the correct sequence of locations that
navigate through MAZE without doing anything fishy.

* The function raises an ERROR if PATH is invalid, and it does nothing if the
path is valid.

 You can test this functionality with the EXPECT_ERROR() and
EXPECT_NO_ERROR() functions in the simple test framework!

Part I: Maze

checkSolution()
void checkSolution(Grid<bool>& maze, Stack<GridLocation> path)

« A few more points about checkSolution:

* One of the things you’re going to have to do is examine the elements in PATH - but
you can’t use a for loop or a for-each loop to examine the internals of a Stack: what
can you do instead?

» Be sure that you test A LOT for this function - because there are so many cases,
there’s a lot of functionality and edge cases that you’re responsible for here!

» To verify that each location is a caridnal step away from the next, think about how
you can reuse your generateValidMoves() function to help.

* If you need to keep track of “visited” items, Sets are great!

Questions about checkSolution()?

"Hey can | copy your homework?"

"Yeah just make sure to change it a

little"
"AIright" If you can’t
\ /Lj I checkSolution(), you might
CHiP TG | run into this problem!
£squeakquel pmm ‘- ? (please abide by the honor

code!)

Part |I: Maze
solveMaze()

* Now it’s time for the big code in this part: solveMaze()!
Stack<GridLocation> solveMaze(Grid<bool>& maze)

» Up to this point, you’ve been validating pre-generated maze solutions
from text files. It’s now time to generate your own solutions to a given

maze!

» Given a Grid<bool> MAZE, it’s your job to return a Stack<GridLocation>
that contains the valid steps to escape it!

Part |I: Maze
solveMaze()

Stack<GridLocation> solveMaze(Grid<bool>& maze)

* To programmatically generate a solution to a given maze, you’ll need to
use a Breadth-First Search (BFS) like the one you learned on Wednesday

7/1.

* Nick’s great lecture covers BFS in depth, so | won’t waste your time duplicating the
logic. Check out his slides for more deets!

. Here ’S the algo r-ith m: 1. Create a queue of paths. A path is a stack of grid locations.

2. Create a length-one path containing just the entry location. Enqueue that path.
o For simplicity, assume entry is always the upper-left corner and exit in the lower-right.
3. While there are still more paths to explore:
o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.
= Alocation has up to four neighbors, one in each of the four cardinal directions. A

neighbor location is viable if it is within the maze bounds, the cell is an open
corridor (not a wall), and it has not yet been visited.

Part |I: Maze
solveMaze()

&

Part I: Maze

__

Part I: Maze

Part I: Maze

.
//%

1. Create a queue of paths. A path is a stack of grid locations.

PATHS

//////// | MAZE

Part I: Maze

2. Create a length-one path containing just the entry location. Enqueue that path.

/

PATHS

//////// | MAZE

Part I: Maze

2. Create a length-one path containing just the entry location. Enqueue that path.

/

PATH

PATHS

//////// | MAZE

Part I: Maze

2. Create a length-one path containing just the entry location. Enqueue that path.

/

PATHS

//////// | MAZE

Part I: Maze

a very small example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

PATHS

Part I: Maze

a very small example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

PATHS

=

Part I: Maze
solveMaze()

,//;////

ry e example: 3. While there are still more paths to explore:

CURRENT_PATH

4

MAZE PATHS

=

Part I: Maze
solveMaze()

,//;////

ry e example: 3. While there are still more paths to explore:

CURRENT_PATH

10,03
CURRENT_PATH_EXIT

4

MAZE PATHS

Partl: M
solveMaze()

CURRENT_PATH

S —— i

CURRENT_PATH_EXIT

PATHS

Partl: M
solveMaze()

CURRENT_PATH

10,03
CURRENT_PATH_EX.T

PATHS

PartI: M

solveMaze()

;//f/,;/j,zﬁ/;/%?/;/’:) r’u a Very Small example: 3. While there are still more paths to explore

CURRENT_PATH

MAZE PATHS

__.

Part I: e
solveMaze()

CURRENT_PATH

VALID_NEIGHBORS

PATHS

.

Part |I: Maze
solveMaze()

CURRENT_PATH

{{0, 0} } VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

Pa aze
solveMaze()

CURRENT_PATH

y

{{0, 03, {1,033 VALID_NEIGHBORS

CURRENT_PATH_CPY

Pa aze
solveMaze()

3. While there are still more paths to explore:
If this path ends at exit, this path is the solution!
If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
\ CURRENT_PATH
10, 03, {1,03 VALID_NEIGHBORS

CURRENT_PATH_CPY

Part I: Maze

Repeat!

VALID_NEIGHBORS
CURRENT_PATH_CPY

CURRENT_PATH

__

Part I: Maze

a very small example:
f 3. While there are still more paths to explore:
o Dequeue path from queue.

PATHS

Part I: Maze

a very small example:
3. While there are still more paths to explore:
o Dequeue path from queue.

PATHS

Part I: Maze

a very small example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

PATHS

__

Part I: Maze

a very small example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

PATHS

g

Part |I: Maze
solveMaze()

CURRENT_PATH

PATHS

Part I: M

solveMaze()

CURRENT_PATH_EXIT

CURRENT_PATH

PATHS

=

Part I: Maze
solveMaze()

,//;////

ry e example: 3. While there are still more paths to explore:

TS}
{1,03 aw v 11,23
CURRENT _PATH_EXIT

CURRENT_PATH

4

MAZE PATHS

g

Part |I: Maze
solveMaze()

CURRENT_PATH

PATHS

Part I: M
solveMaze()

CURRENT_PATH

PATHS

__.

Part I: e
solveMaze()

CURRENT_PATH

VALID_NEIGHBORS

PATHS

_

Part |I: Maze
solveMaze()

CURRENT_PATH

{{0, 03, {1,03 } VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

_

Part |I: Maze
solveMaze()

CURRENT_PATH

y

{{0, 03, {1,03 } VALID_NEIGHBORS
CURRENT_PATH_CPY

_

Part |I: Maze
solveMaze()

CURRENT_PATH

y

{{0, 03, {1,03, { 1,1 }} VALID_NEIGHBORS
CURRENT_PATH_CPY

Pa

VA

solveMaze()

3. While there are still more paths to explore:

> If this path ends at exit, this path is the solution!

> If path does not end at exit:

= For each viable neighbor of path end, make copy of path, extend by adding
\ CURRENT_PATH

{{0, 03, {1,03, { 1,1 }} VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

__

Part I: Maze

a very small example:
f 3. While there are still more paths to explore:
o Dequeue path from queue.

__

Part I: Maze

a very small example:
f 3. While there are still more paths to explore:
o Dequeue path from queue.

CURRENT_PATH

__

Part I: Maze

3. While there are still more paths to explore:
o Dequeue path from queue.

CURRENT_PATH

_&

Part |I: Maze
solveMaze()

CURRENT_PATH

=

Part I: Maze
solveMaze()

,//;////

ry e example: 3. While there are still more paths to explore:

Part I:
solveMaze()

alk thru a very small example: |EZEEEX

CURRENT_PATH

MAZE PATHS

Part I: M
solveMaze()

CURRENT_PATH

VALID_NEIGHBORS

_

Part |I: Maze
solveMaze()

CURRENT_PATH

{{0, 03, {1,03}, {1,133 VALID_NEIGHBORS

CURRENT_PATH_CPY

_

[]
Part I: Maze -
;?ép/ h Fru a ve ry Small exam p le 3. While there are still more paths to explore:
/ o |If this path ends at exit, this path is the solution!
o If path does not end at exit:
For each viable neighbor of path end, make copy of path, extend by adding
LID_NEIGHBORS

56
/

£{0, 03, {1,03, {1,133
CURRENT_PATH_CPY

PATHS

_

[]
Part I: Maze -
;?ép/ h Fru a ve ry Small exam p le 3. While there are still more paths to explore:
/ o |If this path ends at exit, this path is the solution!
o If path does not end at exit:
For each viable neighbor of path end, make copy of path, extend by adding
LID_NEIGHBORS

o &
y

110, 03, 11,03, 11,13, {1,2} }
CURRENT_PATH_CPY

PATHS

_

Part |I: Maze
solveMaze()

CURRENT_PATH

£1{0, 03, {1,03, {1,13, {1,2}} VALID_NEIGHBORS
CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

Repeat!
{{O 6}, 1,0}, {1,1}, {1,2}}

CURRENT_PATH

VALID_NEIGHBORS

CURRENT_PATH_CPY

e NG

Part I: Maze

RRRRRRRRRRRR

Part I: Maze

TTTTTTTTTTTTTTTTT

RRRRRRRRRRRR

Part I: Maze

1

earlier to get valid neighbors!

he maze and can’t find a solution.

) / | |
/// e that you don’t revisit them!

Part |I: Maze
solveMaze()

* Once you get a working solution, you’ll need to add graphics to the maze.

» We give you access to the MazeGraphics class to do this - all you need to
do is call the function

MazeGraphics: :highlightPath(Stack<GridLocation> path, string color)

» to highlight the current path that you’re considering.

* For more details about this documentation, look at MazeGraphics.h in your starter
project!

Part |I: Maze
readMazeFile()

* The last thing you’ll have to do is pretty short - you need to ensure the
robustness of the pre-written readMazeFile() function!

void readMazeFile(string filename, Grid<bool>& maze) {

 This function reads in a maze as a .txt file and populates MAZE with the
corresponding maze format.

* You’ll need to beef this function up to ensure that it doesn’t have any
bugs!

Part |I: Maze
readMazeFile()

* There are 2 places where you’ll need to do some checking:

1. Amaze row that is longer or shorter than the other rows.
o Each maze row is required to have same length as all the others.
2. A maze location containing a character thatisnot @ or -.

o The valid options for a location are open or wall. Anything else is an error.

| don’t want to give anything more specific away here - check the source
code in the project and you’ll need to figure out exactly where these
changes need to be made!

 You should raise an error if you find any infractions.

Part I: Maze

Part Il: Search engine

* |n this final part, you’ll be putting your ADT skills to the test
by creating a data structure that can power a search engine.

 This is not an easy feat, so we’ll go step by step!

An old A6 in CS106b was

. Why does “MiniBrowser,” where
you implement page
history, autocorrect and
Shows you something auto scrolling! It was a
about the human . why does my dog eat grass toughie :p

condition, no? . why does my eye twitch

. why does my stomach hurt

. why does my chest hurt

.. why does my cat lick me

Part Il: Search engine

* The first thing you’ll need to do is implement the helper function

string cleanToken(string token)
that formats the provided TOKEN and returns the formatted verson.

* Here are the steps to formatting a token:
1. If TOKEN does not contain any letters at all, return empty string (“”);
2. Trim all leading and trailing punctuation from TOKEN.
 ,,.EGGS!; becomes EGGS
3. Convert TOKEN to lowercase.
» EGGS becomes eggs

Part Il: Search engine

* Next, you’ll need to do is read in the database of websites from a text
file!
« Namely, you’ll be implementing this function:

Map<string, Set<string>> readDocs(string dbfile)
{

Map<string, Set<string>> result;

// TODO: your code here
return result;

that takes in a database file name DBFILE and returns a Map<string, Set<string>.

Part Il: Search engine
readDocs()

db file

www. shoppinglist.com

» The database file that you’re

/ /i / . g7, EGGS! milk, fish, @ bread cheese
parsing will look something like £ -
tf1is' S www. rainbow.org
é ol H Ut €91 red ~green~ orange yellow blue indigo violet
* DasSiCally, eacn cotection o 1nes www.dr.seuss.net
is a url-content combo. One Fish Two Fish Red fish Blue fish !!!
* The first line of the pair will be a bigbadwolf
1 .bigbadwolf.com
URL and the second will be the text not trying to eat you

content (all in one line) of the
corresponding page.

° You W'ill need to pOPUlate the ::www.bigbadwolf.c?m” : E"eat::, ::i-lm“.’. ".r.mt".’. ":c'o“,"”t:yin%", "you"},
map RESULT W]th pa] rS Of URL to ":miglzzz\iso:; ::{{"b?i:f,’"g:::“: "?EZiéo"te?o;an;:?,}','red", "violet", "yello

sets of unique words in the ,
Corresponding page. "www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}

Part Il: Search engine

db file
’ / / . www . shoppinglist.com
* You'll notice a few things here: . [I S W
 First you’ll see that the tokens S www . rainbow.org
(each individual word in the line of red ~green~ orange yellow blue indigo violet
text) on the content lines are www.dr . seuss. net
formatted in the map! You’ll need One Fish Two Fish Red fish Blue fish !!!
to format each token with www . bigbadwolf . com
cleanToken() before it goes in the I'm not trying to eat you
map!
« Second, you might notice that the
y s ’ "www.bigbadwolf.com" : {"eat", "i'm", "not", "to", "trying", "you"},
Order Of URLS]Sn t the same "www.dr.seuss.net" : { "blue", "fish", "one", "red", "two"},
between the ﬁrSt and the Second "www.rainbow.org" : { "blue", "green", "indigo", "orange", "red", "violet", "yello

examples - this is out of your
control, so you should’t worry
about it ©

"www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}

Part Il: Search engine
readDocs()

db file
www. shoppinglist.com
/ Let’s talk abOUt hOW tO format a i EGGS! milk, fish, @ bread cheese
line of content from the db file: 3 wwW . rainbow. org

e URL’s are easy - you don’t need to 7 red ~green~ orange yellow blue indigo violet
mod]fy them. www.dr.seuss.net

« Lines of page content are more One Fish Two Fish Red fish Blue fish !!!
complex: www . bigbadwolf . com

I'm not trying to eat you

1. Tokenize the line into a
collection of strings, separated
by whitespace (stringSplit will
be very helpful here), and call
cleanToken() on each token.
Store the result in a Set<string> ,
that will be the value "www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}
corresponding to a url!

"www.bigbadwolf.com" : {"eat", "i'm", "not", "to", "trying", "you"},
"www.dr.seuss.net" : { "blue", "fish", "one", "red", "two"},
"www.rainbow.org" : { "blue", "green", "indigo", "orange", "red", "violet", "yello

Part Il: Search engine
readDocs()

db file
/ / Z www . shoppinglist.com
/ A feW t]ps abOUt Creat]ng th]S i EGGS! milk, fish, @ bread cheese
. —
map- Drc_s www. rainbow.org
* You're going to need to store an red ~green~ orange yellow blue indigo violet
entry in the map once every two www.dr. seuss.net
lines (it takes 2 lines to get a One Fish Two Fish Red fish Blue fish !!!
single key-value pair) - can you .bigbadwolf.com
manipulate a loop to help you do not trying to eat you
this?
» readEntireFile() in filelib.h is an , | |
: . "www.bigbadwolf.com" : {"eat", "i'm", "not", "to", "trying", "you"},
easy Way to read a f]le]nto a "www.dr.seuss.net" : { "blue", "fish", "one", "red", "two"},

VeCtOr! "www.rainbow.org" : { "blue", "green", "indigo", "orange", "red", "violet", "yello

"www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}

Part Il: Search engine
readDocs()

db file
. / www . shoppinglist.com
/ TO dlscard non-WOI’dS, lsalpha() E EGGS! milk, fish, @ bread cheese
will be helpful, and to trim 5 W rainbow. org
punCtuation, iSpunCt() W'Ill help. red ~green~ orange yellow blue indigo violet
- Trimming punctuation can be ww. drr. seuss. net

difficult so I’d recommend handling One Fish Two Fish Red fish Blue fish !!!

leading punctuation and trailing SRR

punctuation in separate steps. 1M (5 WEFTHE 150 CENE I

1. Until your first letter is not
punctuation, remove the first

l tter "www.bigbadwolf.com" : {"eat", "i'm", "not", "to", "trying", "you"},
ete "www.dr.seuss.net" : { "blue", "fish", "one", "red", "two"},
2. Until your last letter is not "www.rainbow.org" : { "blue", "green", "indigo", "orange", "red", "violet",

punctuation, remove the last
letter

"www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}

Part Il: Search engine
readDocs()

db file
; www . shoppinglist.com
, Some ﬁnal nOteS abOUt the E EGGS! milk, fish, @ bread cheese
prOblem: DE_; www . rainbow.org
e “Strlib.h” may be he[pfu[here for red ~green~ orange yellow blue indigo violet
little String t]ps www.dr.seuss.net

One Fish Two Fish Red fish Blue fish !!!

www . bigbadwolf . com

« To convert a string to lowercase,
use toLowerCase(), but be aware
that it returns a new string
instead of modifying the existing

I'm not trying to eat you

one! , | |
. / "www.bigbadwolf.com" : {"eat", "i'm", "not", "to", "trying", "you"},
» Because the Value n RESULT 1S a "www.dr.seuss.net" : { "blue", "fish", "one", "red", "two"},
Set<string> you can treat "www.rainbow.org" : { "blue", "green", "indigo", "orange", "red", "violet", "yello
, "

RESULT[somekey] as a Set<string>
and do things like:

« RESULT[somekey] += “hello”

"www.shoppinglist.com" :{ "bread", "cheese", "eggs", "fish", "milk"}

Questions about readDocs?

Untitled 241.doc
Untitled 138 copy.docx
Untitled 138 copy Z, doex
Untitled 139. docx
Untitled 40 MOM ADDRESS.3pg
Untitled 242.doc
Untitled 243.doc
Untitled ﬁf-i3 IMPORTANT. doc

ot s I'_"

PROTIP: NEVER LOOK, IN SOMEONE.
ELSE’s DOWWMENTS FDLDER.

Part Il: Search engine
buildindex()

’ . /
. It S.nOW t]me. for yOU tO bU]ld Map<string, Set<string>> buildIndex(Map<string, Set<string>>& docs)
an inverted index!

» This function takes in the
structure you created in
readDocs() and returns a new
Map that pairs a unique word to
a set of URLS at which that word {

can pbe found. “seach” : { “google.com, bing.com” }
* Remember, the map in “login” : { “webkinz.com” }

readDocs() paired url’s to unique }

words in the website, and this

one pairs unique words to sets

of urls in which that word

appears!

Small sample inverted index:

///

Part Il: Search engine
buildindex()

’ . /
. It S.nOW t]me. for yOU tO bU]ld Map<string, Set<string>> buildIndex(Map<string, Set<string>>& docs)
an inverted index!

» This function takes in the
structure you created in
readDocs() and returns a new
Map that pairs a unique word to
a set of URLS at which that word {

can pbe found. “seach” : { “google.com, bing.com” }
* Remember, the map in “login” : { “webkinz.com” }

readDocs() paired url’s to unique }

words in the website, and this

one pairs unique words to sets

of urls in which that word Qu eStionS?

appears!

Small sample inverted index:

Part Il: Search engine
findQueryMatches()

* |n this next part, you’re actually going to be servicing a user query,
meaning that you’ll take in a search request and return a result!

Set<string> findQueryMatches(Map<string, Set<string>>& index, string query)

» Given a specific query string and an inverted index, mapping unique
words to sets of urls in which they appear, you need to return a set of
url’s that satisfy the query.

» But what does a query look like?

Part Il: Search engine

W/l 2 g q
\DEX does this for you - it maps a string to

| |
|
gy
years!

=
...

http://www.stanford.edu/

Part Il: Search engine
findQueryMatches()

* Here’s an example query:
* Fugu; +fish

* Here we have TWO tokens! You can isolate them with stringSplit().

» Notice that the second string contains (+)! The (+) sign is a special operator in
your query - it performs a set intersection between the left and right sets.

» An intersection means the Set<string> returned should contain only the urls that
contain both “fugu” AND ”fish”

« VERY important note: notice that the same punctuation stripping and
lowercase rules apply to tokens in your query string

* You’ll need to keep an eye out for the (+) operator; it’ll be the first character
of a query token - your string cleaning routine will attempt to remove it, so
keep that in mind!

Part Il: Search engine
findQueryMatches()

* Here’s another query:
» Cat Dog

 Like the last example, you’ll stringSplit() the line into two tokens.

Because there’s no operator here, you’ll use set union, meaning the set
you return should be a set of urls that either contain “Cat” OR “Dog”.

Union and Intersection

Union (no operator) - return
all url’s that contain at least
1 of the words!

Intersection (+ operator) -
return all url’s tht contain
BOTH tokens (small subset!)

Part Il: Search engine
findQueryMatches()

» Here’s another example:
 Bibimbap -mushrooms

* Here we’ve introduced another example with the (-) operator.
This operators performs set subtraction, meaning, the
resulting set should contain all urls that contain “bibimbap”
that DO NOT contain “mushrooms”

Part Il: Search engine
findQueryMatches()

» Here’s one last complex example:
* CS +106B -RECURSION!!! fun

* Here we have multiple tokens in our query string. We’ll first
need to split them and clean them to get
« { “cs”, “106b”, “recursion”, “fun” }

» You’ll of course need to remember the placement of the (+ and -)
operators, but | just wanted to show you the string cleaning here.

* From there, you will process the query from left to right.
* ((cs +106b) -recursion) fun

or
* ((“cs” intersection “106b”’) subtracted from “recursion”) union “fun”

Part Il: Search engine
findQueryMatches()

» Some tips for findQuery Matches()

» First and foremost, be sure to break this problem down into actionable
pieces! Please use helper functions to solve this problem.

| would recommend reuising your cleanToken() helper function!

* The tricky set operation stuff isn’t actually as spooky as it might
initially seem - check out this set documentation and bask in the
operators we’ve provided you © (you’ll probably want +, *, and -)

setl + set2
set + value
setl += set2;.
set += value;.
setl - set2
set - value
setl -= set2;
set -= value;.
setl * set2
setl *= set2;.

Returns the union of sets setl and set2, which is the set of elements that appear in at least one of the two sets.
Returns the union of set set1 and individual value value.

Adds all of the elements from set2 (or the single specified value) to set1.

Adds the single specified value to the set.

Returns the difference of sets set1 and set2, which is all of the elements that appear in setl but not set2.

Returns the set set with value removed.

Removes the elements from set2 (or the single specified value) from set1.

Removes the single specified value from the set.

Returns the intersection of sets setl and set2, which is the set of all elements that appear in both.

Removes any elements from set1 that are not present in set2.

https://web.stanford.edu/dept/cs_edu/cppdoc/Set-class.html

-

Part Il: Search engine

;é:;z»:ﬂ’ if extant, will appear
You cannot assume that the

o

Y.

=

,,,,,,, grief later) that your query

i
/////(/// and “apple” should be looked

|
|
|

Questions about findQueryMatches?

* This part is pretty complex, GREETINGS, STRANGER.

/
WHATEVER QUEST DRIVES YOU,
ABANDON 1T,

/
YOU SHALL FIND NO ANSWERS
IN THESE DESOLATE WASTES.

I KNEL:J T WOULDN'T

remember to decompose!

T HATE FEEUNG DESPERATE. ENOUGH To VIS
THE SECOND PAGE OF GOOGLE. RESULTS.

Part Il: Search engine
building searchEngine()

* |t’s finally time for you to put
your querying skills to the test
- you’re going to write a
function that serves as a
search engine!

* You’ll be implementing the
following function:

void searchEngine(string dbfile)

Part Il: Search engine
building searchEngine()

* You will need to read in the
provided DBFILE and convert it
into an inverted index.

* You’ve already written the
functions to do this ©

* You’ll then need to display to the
user how many URL’s were
processed to build the index and
how many distinct words were
found in all of the files

» Think about your data structures -
is this data stored anywhere?

void searchEngine(string dbfile)

Part Il: Search engine
building searchEngine()

* You’ll then need to repeatedly
prompt the user for search
queries like the ones discussed
earlier.

* You will find the appropriate
Set<string> result for that
query and print it.

* Repeat until the user enters “”,
and then exit the program.

 Your goal is to match this
functionality exactly!

Stand by while building index...
Indexed 50 pages containing 5595 unique terms.

Enter query sentence (RETURN/ENTER to quit): llama
Found 1 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html"}

Enter query sentence (RETURN/ENTER to quit): suitable +kits

Found 2 matching pages
{"http://cs1@6b.stanford.edu/assignments/assign2/searchengine.html", "http://cs106b.sta
nford.edu/qt/troubleshooting.html"}

Enter query sentence (RETURN/ENTER to quit): Mac linux -windows

Found 3 matching pages

{"http://cs106b.stanford.edu/lectures/sets-maps/ga.html", "http://cs106b.stanford.edu/q
t/install-linux.html", "http://cs106b.stanford.edu/qt/install-mac.html"}

Enter query sentence (RETURN/ENTER to quit): as-is wow!

Found 3 matching pages

{"http://cs106b.stanford.edu/about_assignments", "http://cs106b.stanford.edu/assignment
s/assignl/soundex.html", "http://cs106b.stanford.edu/assignments/assign2/searchengine.h
tml"}

Enter query sentence (RETURN/ENTER to quit):

All done!

Part Il: Search engine
building searchEngine()

 Some notes about
searchEngine()

» You shouldn’t have to write a ton
of new code here - virtually all
of the lifting has already been
done by the other functions in
the program - you’re just
bringing them together now!

* |If you’ve written some great
tests for your helper functions,
this part should just work! If you
encounter a bug, try to isolate it
to a particular function by using
the debugger!

Stand by while building index...
Indexed 50 pages containing 5595 unique terms.

Enter query sentence (RETURN/ENTER to quit): llama
Found 1 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html"}

Enter query sentence (RETURN/ENTER to quit): suitable +kits

Found 2 matching pages
{"http://cs1@6b.stanford.edu/assignments/assign2/searchengine.html", "http://cs106b.sta
nford.edu/qt/troubleshooting.html"}

Enter query sentence (RETURN/ENTER to quit): Mac linux -windows

Found 3 matching pages

{"http://cs106b.stanford.edu/lectures/sets-maps/ga.html", "http://cs106b.stanford.edu/q
t/install-linux.html", "http://cs106b.stanford.edu/qt/install-mac.html"}

Enter query sentence (RETURN/ENTER to quit): as-is wow!

Found 3 matching pages

{"http://cs106b.stanford.edu/about_assignments", "http://cs106b.stanford.edu/assignment
s/assignl/soundex.html", "http://cs106b.stanford.edu/assignments/assign2/searchengine.h
tml"}

Enter query sentence (RETURN/ENTER to quit):

All done!

Any questions about Part 11?7

That's it o

Stack Efron, 106B alum,
congratulating you on a
job well done!

