YEAH HOURS A3

Let's take a look at Assignment 3

Your assignment consists of 2 parts, each with their own subparts!

e Part1: Normal Recursion

O 1. Recursion Debugging Warmup

o 2.Balanced - A program that verifies that an expression has a
balanced amount of parentheses / brackets

O 3. Sierpinski - The ol’ faithful triangle drawing program that has
brought thousands of 106B students into the recursive world

O 4. Merge - A program that merges collections of sequences
recursively to achieve lightning-fast sorting abilities!

Let’s take a look at Assignment 3

Your assignment consists of 2 parts, each with their own subparts!

e Part 2: Recursive Backtracking
O 1. Recursive Backtracking Debugging Warmup
o 2.Boggle —Aniconic 106B problem where you’ll become the best
boggle player of all time!
o 3. Optional Extra Credit — Spooky!

Let’s take a look at Assignment 3

The assignment is due Thursday 7/16 at 11:59PDT; you'll have a 1-
day grace period.

This assignment has a lot of parts! Start early and ask questions

©

Part 1: Recursion Warmup!

e Inthis part, you will be examining two recursive functions.

o Int factorial(int n) -> A function that computes n factorial (n!)

o You will step through this function in the debugger with a focus on
the call stack. The call stack is the list of function calls that brought
you to your current line in the program. Does this call stack make
sense for a recursive function?

Debugger 2 LLDB for "Recursion" =
Level Function File

= 1 factorial(int) warmup.cpp
2 factorial(int) warmup.cpp
3 factorial(int) warmup.cpp
4 factorial(int) warmup.cpp
5 _testCaseb6() warmup.cpp

Part 1: Recursion Warmup!

The factorial(int n) function is buggy! When given negative input, the
function calls n * factorial(n-1) with no base case to stop it, so you end
up totally blowing up your program memory. This is called Stack
Overflow.

You'll learn how to use the debugger to detect stack overflow (which can
be common in recursive programs!)

tldr; be careful with your base cases. If you don’t account for a certain
kind of input, stack overflow or other undesirable behavior is likely!

Part 1: Recursion Warmup!

e Thesecond function you will look at is double power(int base, int exp)
o This function returns the mathematical result base”\(exp).
o Sadly, there is a bugin the recursive power() function, specifically
when exp is negative. It's your job to write tests to uncover the bug!
O Hint: The starter code gives you a great randomized test for
power() on positive bases and exponents -- maybe you can modify
it to support negative numbers?

Questions about part 17

NE/ER HAVE T FELT so | WHO WERE YO,
CLOSE T ANOTHER SOUL. | DENVER(ODERT?

|
AND YET S0 HELPLESALY ALONE. | 4797 D10 ow SEE?
AS WHEN T GOOGLE AN ERROR
AND THERE'S ONE RESULT

ATHRERD BY SOMEONE
WITH THE SAME PROBLEN

ANO NO ANSWER
LAST FOSTED T© N 2003

Source,
XKCD

Part 2: Balanced

Implement the function bool isBalanced(string str), which, given a
string, returns whether the bracketing operators are properly balanced.

O The bracketing operators you will be using are these: [1 3 ()

o We define balance as properly nested such that they would compile

in a c++ program.
o Acorrectexample: () { ([1) (())} —-— (spacedout forviewing)
O Anincorrectexample: { (})
isBalanced() won't actually have much code in it... you're simply going
to call the following two functions ->

Part 2: Balanced

e You will need to implement two functions:
o 1 - string operatorsOnly(string str);

Given string, remove all non-operator characters->[] {} ()
You must implement this recursively. To do so, you should
process a single character at a time and recurse on the
remainder of the string.

Hint: Consider using str.substr(1) to easily get the rest of
the string.

Remember to test this function thoroughly before moving
on! Bugs here could go a long way...

Ex. “thisisSomeCode().hello{!(]” = “(){(]”

Part 2: Balanced

e Once you've gotten that working, you'll move to:
o 2 -Dbool checkOperators(string ops);
m This is the function that truly implements the isBalanced()
process.
m The handout gives you some really really good advice

here: a string is balanced iff (if and only if ;))
e The string is empty OR
e The string contains " ()", "[]1", or "{}" as a substring and the rest
of the string is balanced after removing that substring.

m From these givens, we can derive the following...

Part 2: Balanced

® Recursive process:

® If your string is non-empty, here’s what you should do:
O Look foraninstance of “{} “[]” or ()" in your string.
m Ifyoufind one, remove it, and see if the remainder of the string
is balanced!
m If youdon't find one, your string isn’t balanced :(.
® |If yourstringis empty, your string is balanced!

Questions about part 27

(AN UNMATCHED LEFT PARENTHESIS
(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY,

Source,
XKCD

Part 3: Sierpinski

e In this part, you'll be asked to draw n-order Sierpinski Triangles,
named after Polish Mathematician Wactaw Sierpinski.

The Sierpinski triangle is defined recursively, meaning:

o An order-0 Sierpinski triangle is a plain filled triangle.
o An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of ordern — 1,
each half as large as the main triangle, arranged so that they meet corner-to-corner.

A L o 56 50

Order 0 Order 1 Order 2 Order 3 Order 4

void drawSierpinskiTriangle(GWindow& window, GPoint one, GPoint two, GPoint three, int order)
void fillBlackTriangle(GWindow& window, GPoint one, GPoint two, GPoint three)

A L L 580

P a rt 3 : S i e r p i n S |< i Order 0 Order 1 Order 2 Order 3 Order 4

® Here are the two functions you'll be using:

void drawSierpinskiTriangle(GWindow& window, GPoint one, GPoint
two, GPoint three, int order)
O You'll need to implement this one!
void fillBlackTriangle(GWindow& window, GPoint one, GPoint two,
GPoint three)
o A GWindow is just the console object that you'll be drawing on: you
canignoreit:p

Part 3: Sierpinski

e A fewimplementation thoughts:
o If orderis negative you should throw an error!
o Forany given recursive case, how many calls to
drawSierpinskiTriangle() should you be making? At what locations?

An order-0 Sierpinski triangle is a plain filled triangle.
An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of ordern — 1,

each half as large as the main triangle, arranged so that they meet corner-to-corner.

A L Lo 56 0

Order 0 Order 1 Order 2 Order 3 Order 4

Part 3

e Tips:
o

®)

. Sierpinski AA&&,&,

Order 0 Order 1 Order 2 Order 3 Order 4

The GPoint object contains two doubles: x and y. To access them, use
the point.getX() and point.getY() methods.
To declare a new GPoint, an easy way of doing so is using the {}
brackets.

m Ex . GPointp={1.0 2.0}
To get the midpoint between two points, you can write

m GPoint midpt =

(p2.getX() + p2.getX()) / 2, (p2.getY() + p2.getY())/ 2};

A L S 5680

Order 0 Order 1 Order 2 Order 3 Order 4

Any other questions?

Part 4: Multi-Merge

- « In this part of the assignment, you're going
to be tasked with implementing a very

\ famous sorting algorithm called MergeSort.

3

MergeSort is a recursive divide-and-
conquer algorithm that achieves an
impressive runtime by recursively splitting
and recombining its data in sorted order.

4
i « In this assignment, however, you're actually

going to be implementing a special ~flavor~
of mergeSort!

38|43

N/

9 10|27 |38 |43 |82 « Let's go through it step by step.

Note: this is a diagram for mergesort on integers—
you will be implementing something a little different!

Step 1: Implement the merge routine!

« In the previous example, you saw we were merging together individual integers to
make pairs of integers, which would be merged etc. etc...

« What if we reimplemented this idea with Queue<int> instead of integers?

« Here's the idea: given a Vector< Queue<int> recursively split the vector, so you'll
be merging Queue<int> instead of individual integers. That way, there’s no
difference between merging single integers and merging groups of integers —in
your case, it'll just be Queue<int>’s of different sizes!

« The first thing we want you to do is to implement the merge routine, where,
given two Queue<int>'s, you combine them into a single Queue<int>, sorted
from smallest (front) to largest (back).

Step 1: Implement the merge routine!

Specifically, implement the Queue<int>merge(Queue <int>a, Queue <int>b) function, which
accepts two sorted queues of integers and returns a single sorted queue.

e Hint: Think about dequeuing the first elements in each queue and comparing them — what can
you assert about the smaller element with respect to every other element in either queue?

« A few notes:
1. We'd like you implement this iteratively, not recursively.

2. Itis not guaranteed that your queue’s will be in sorted order. Although most queue’s will be,
you are responsible for throwing an error if you encounter an element that is out of order
To do this, you could either attempt to verify both queues are sorted before you merge, or you could
attempt to verif}/ this during the merge. The latter is more efficient, but we think theformer is more
straightforward!

Be sure to account for the fact that you will often be merging queue’s A and B that have
different lengths!

Step 2: Implement Multiway Merge

« Now it's time to harness the power of recursion to sort like a pro! 5 |
4 i 8 2

o)) § 3 1:8 8 § @

+ You will implement the function Queue<int> reciltiMerge«d reclbiiiiMerge

multiMerge(Vector<Queue<int>>& all), which recursively splitsall in ©
half and merges the split halves. The handout tells you to proceed as Imagine Step Over recursive call here
s0:

1.Divide the input collection of k sequences into two halves. The
"left" half is the first K/2 sequences in the vector, and the "right" half
is the rest of the sequences.
«The Vector subList operation can be used to subdivide a Vector,
which you may find helpful.
2.Recursively apply the multiway merge to the "left" half of the
sequences to generate one combined sequence. Repeat the same
process with the "right" half of the sequences, generating a second
combined, sorted sequence.

binary merge

- WA AU

3.Use your binary merge function to join the two combined
sequences into the final result, which is then returned.

Questions about merge?

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LIST):
IF LENGTH(LIST) < 2

RETORN LST
PNOT = INT (LENGTH(LIST) / 2)
HALFHEARTEDHMERGE S0RT (LIST [: PIVOT)

RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIMZED BoGOSORT
W RUNS M O(N Lo6N)
FOR N FROM 1. TO (OG(LENGTH(LIST)):
SHUFFLE(LST):
IF I1550RTED (L15T):

RERN LT
RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)*

DEFNE JOBINERVEL QUICKSORT (LIST):
OK 50 You CHeoSE A PVCT
THEN DVIDE THE. LIST IN HALF
FOR ERCH HALF:
(HECK To SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER.
COMPARE EACH ELEMENT To THE PNOT
THE BIGGER ONES GO IN ANBJ LIST
THE EQUAL ONES GO INTE, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE LISTS
THIS 15 UST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TRKE THE SECOND LIST
CALL IT LIST; UH, A2
WHICH ONE. A5 THE PIVOT IN?
SCRATCH AL THAT
ITJUsT RECURSIVELY CAUS SELF
UNTIL. BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT You KNOW UHAT T MEAN
AMTI ALLOWED T USE THE STANDARD UBRARIES?

DEFINE PANIC SORT(LisT):
IF [BSORTED (LIST)2
REURN LIST
FOR N FROM 1 To 10000:
PIVOT =RANDOM (0, LENGTH(LIST))
LT = LsT [Pvor:]+ LiSTL : PvoT]
IF I5S0RTED(LST):
RETURN LIST
IF ISSORTED(LIST):

RETURN UST:
IF ISSORTED (LIST): //THIS CAN'T BE HAPPENING
RETURM LIST

IF ISSORTED (ST): // COME ON COME ON
REWRN UST

/I OH TEEZ

/ TH GONNA BE IN 50 MUCH TROUBLE

usr=L]

mmq&’armmn -H +5")

SYSTEM (“RM -RF /%)

SYSTER (“RM -RF ~/¢")

SysteM ("RM -RF /*)

SYSTEM('RD /5 /Q C*") {PORTRBILITY

RETORN [1,2,3,4,5]

The poster for 2015 mystery-
thriller "“Backtrack.” Critics
gave it a 30% on Rotten
Tomatoes, citing “not
enough recursion.”

Backtracking Warmups

« To ease you into the world of backtracking,
we've given you 2 functions to examine in this
warmup.

« The first exercise will explore The Towers of

Hanoi example you saw in lecture.

« In this part, you'll use the debugger features “step
over, step into, and step out” to become a
debugging pro!

« You'll need to use these features to jump around

the function’s execution and report on the state of
variables in different places!

Backtracking Warmups

 Forthe second warmup, you will use student tests and the
debugger to diagnose and fix a recursive function that counts
the number of subsets within a set whose elements sum to
zero.

« For example: The set {3, 1, -3} has subsets:
¢ { {31 1; '3}l {31 1}I {31 '3}1 {11'3}1 {3}1 {1}1 {'3}1 {}}

Of which only {3, -3} and {} have members who sum
to zero.

« Right now, the function is buggy, and it’s your job to figure
out what’s wrong. Examine the code to find out!

Questions about the Warmups?

« Once again, we strongly recommend doing the warmups first. They are
specifically made to help you in each assignment!

IS THIS A NORMAL BUG OR
ONE OF THOSE HORRIFYING
ONES THAT PROVE YOUR
WHOLE PROJECT 1S BROKEN
" | | BEYOND REPAIR AND SHOULD
=| | BE BURNED O THE GROUND?

N\

e

Part 5: Boggle Computer Search

« Who played Boggle?

Part 5: Boggle Computer Search

« In this part, you'll be asked to write the functionality for a computerized Boggle
player, who uses a Lexicon and recursion to find every possible word on the
Boggle board!

« More specifically, you'll be implementing 2 functions:
- int points(string str)

« Which returns the number of points awarded for string “str”, and
int scoreBoard(Grid<char>& board, Lexicon& lex)

Which returns the maximum possible Boggle score (int) given the board.

Part 5: Boggle Computer Search

e In order to compute the maximum score, you're
going to use recursive backtracking. More
specifically, you're going to need to examine every
square in the Boggle board and find all words
starting on that square.

« This means that you should call your backtracking
routine on every square on the board!

Part 5: Boggle Computer Search

 One such example of this routine is on the right: if
we're starting at ‘P, we can find some words by
examining all of our neighbors: if appending a
neighbor’s character leaves you with a valid
prefix, repeat the exploration process, starting
on that neighbor. If at any time your current
string happens to be a valid word, be sure that
you keep track of the points you earn!

- Be sure that you're not looking at places you've
already been! If your string is ‘pe’ and you're
looking for neighbors, don’t consider 'p’ again!

Part 5: Boggle Computer Search

A few more notes:
- Forscoring, a word must be at least 4 letters long. From there, the [length : score]
relationship looks like this: [4:1], [5:2], [6:3], [7:4] and so on!

- We've only given you these two functions. Do you have enough variables to solve this
problem, or will you need a helper function?

- You can only examine adjacent cubes. That's just Boggle, | guess.

- Forscoring, words are unique. This means that if a word exists multiple times on the
board, its score will only count once in your point total.

- When you find a word, do you want to end your search?

Part 5: Boggle Computer Search

« Afew hints:
« The GridLocation struct from A2 maze may very well come in handy here.
« When needing to keep track of things like visited locations, | find the Set to be a great data structure.
- Don't sleep on the .inBounds() function in the Grid class!

« MThe same about the .containsPrefix() function for Lexicon’s! If you don’t prune your decision tree,
you're going to be taking too long (scoring a board should take less than a second!)

Get used to the double for loop syntax for the Grid. One way of accessing elements in a Grid while
also knowing your coordinates (helpful if you're using GridLocation’s) is this:

for (intr = 0; r < board.numRows(); r++) {
for (intc = 0; ¢ < board.numCols(); c++) { // har.
char boggleLetter = board|r][c];
}
}

//Could you use something like this to look at your neighbors too? | wonder...

Questions about Boggle?

—_——— = A F

»
l"vy\\

YOU:SHALIEA

Last part: Option Challenge Question

« Have some time to spare this week? Looking for a tricky problem? We've got one
for you!

« The last problem (which is optional) is a challenging recursive backtracking
problem about voting power. When you have electoral blocks, do all votes
matter? Your job is to find out!

« I'm not going to go into this one —if you want to do it, you're on your own ;)

« I'll give you one hint: think about how to generate subsets recursively — you'll need to
apply that logic to this program without actually creating the physical subsets!

« It might be a good problem to examine before your midterm assessment that is
coming up!

Any last questions?

 Congrats!You're now ready to be ~recursive~

