
YEAH Hours 
A4

HEAP PQ



Let’s take a second…

•Congrats, you’re past the halfway point in the quarter!

• Take a second to pat yourself on the back. This is hard 

stuff, and you’re doing great ☺

Stack Efron, CS106B alum, 

congratulating on a job well done so far!



The Breakdown:

1. Warmups – Two exercises in which you learn more helpful tips about using the debugger. 

We highly recommend paying close attention to these in the handout, because 

debugging the PQ assignment is historically quite difficult – these were designed to help!

2. Part 1: PQ Sorted Array – Implement enqueue() in a self-sorting priority queue!

3. Part 2: Streaming Top-K – Using a priorityqueue, what kinds of powerful things can you 

do?

4. Part 3: Heap PQ – Implement a priorityqueue using a binary min-heap!



Warmup 
Debrief

• In this week’s warmups, you’ll first

examine a bouncing balls program 

to learn about debugging objects. 

You’ll also learn how to set 

conditional breakpoints, breakpoints 

that only trigger when the program 

is at a pre-defined state.



Warmup 
Debrief

• In the second half of the warmups, 

you’ll work with debugging arrays in 

c++.

• As you can see, you’ll be using a 

new data structure called a 

DataPoint. It’s pretty simple – you 

can see its contents to the right!

•The above code is buggy, and you’ll 

need to step through it in the 

debugger in order to expose its 

memory errors!



What’s a priority queue?

•A priority queue, or a pq as lazy computer scientists like to 

say, is a queue-like data structure (think enqueue() and 

dequeue()), but it has a cool extra feature!

• All elements in a pq are assigned a priority upon 

enqueue(), and that priority determines the order that 

they will be dequeue()’d in!

• For this assignment, your pq will store DataPoint’s, 

which have an internal priority value!

• A pq can either prioritize high priorities or low 

priorities, meaning that the element dequeue()’d will 

always be the one with the highest or lowest priority.

• We’ll be very clear about which magnitude we care 

about each time ☺.
A “max” priotiy queue. Notice how the structure doesn’t 

have to be sorted, so long as the “highest priority 

element” is always next to be dequeue()’d

Dequeue



Part 1: PQ Sorted Array

•For this first part, we’re giving you almost fully implemented priority queue .h and .cpp

files!

•The data structure that stores the pq is an array of elements, much like you’ve seen in 

lecture and section examples!

• In this particular array, all elements are sorted from high to low priorities (front to back), and the 

smallest value priority element will be dequeue()’d first!

• That makes this pq a min priority queue!

•How does this queue work?



Let’s see an example…

0 1 2 3 4

PQ.enqueue(10);
Disclaimer: to simplify things, 

I’ll represent DataPoints simply 

as their priorities



Let’s see an example…

0 1 2 3 4

PQ.enqueue(10);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(10);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.dequeue();



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.dequeue();

yeet!



Let’s see an example…

10 7

0 1 2 3 4

PQ.dequeue();



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

0 1 2 3 4

PQ.enqueue(20);

Sideways yeet! 



Let’s see an example…

7

0 1 2 3 4

PQ.enqueue(20);

Sideways yeet!



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

20 10 7

0 1 2 3 4

PQ.enqueue(20);



Part 1: PQ Sorted Array

•In this part of the assignment, you’ll be asked to implement a single method in the 

pqsortedarray.cpp file: the enqueue(DataPoint element) method!

•The rest of the pqsortedarray.cpp pqsortedarray.h are completed for you!

•You are responsible for inserting the provided element in the correct place in the array to 

preserve the sorted order.

• If you are not appending to the end of the array, you will have to shift the contents of the array over 

in order to accommodate this new element.

• If you attempt the enqueue() an element when the array is full, you are responsible for resizing the 

array. We recommend doubling the current capacity.



Part 1: PQ Sorted Array

•Because verifying the internal state of your array can be tricky, we’ve also written you a

function header called validateInternalState() that you can call after your shiny new 

enqueue() method.

• This function can traverse your array to verify that it’s in sorted order after you enqueue a 

DataPoint.

• We strongly recommend that you implement this helper method – it’ll make your debugging life a 

lot easier!



Part 1: PQ Sorted Array

Helpful hints:

•You might want to make the resize() method a private helper method – it makes for a 

cleaner implementation.

•Apart from enqueue() and validateInternalState(), you may not modify any other functions. 

Adding helpers is okay, though!

•Not sure how to resize an array? Take a look at Section 5’s RBQueue example!

•Debugging this one can be tricky, because there can be subtle edge cases. To expose these 

bugs, stepping through with the debugger and using validateInternalState() will be helpful!



Questions about Part 1?

This xkcd isn’t actually relevant to the 

material, but as a proud Windows user, 

this hits a little too close to home.



Part 2: Client Tasks

•In this part of the assignment, you will be a client, or 

a user, of the pq class.

•With a pq, you can do some really powerful things! 

The code to the right sorts a vector using just 

enqueue! and dequeue()! Take a second to see why 

this works.

•You’ll make a big-O guess about this sorting

algorithm and then time it to verify your prediction!

•Follow up question: Would this still work if your 
priority queue was not backed by a sorted array?



Part 2: Client Tasks

•For the next step, you’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);

•An istream is a special abstraction that acts like a massive data structure. Streams allow you to move 

around massive amounts of memory because they don’t need to hold the data in your computer’s 

memory all at once – as you read data from the stream, the stream can read more data from its source –

a file on disk for example!

• You won’t need to worry about the inner-workings of streams in this class, but it’s important to know that streams 
can store huge amounts of data.

•In the above function, your job is harness the power of the PQ in order to return a Vector<DataPoint> of 

the k highest-priority points in the stream. 

•You must do so in O(k) space, meaning you can only store k elements in your priority queue at any given 

time. 



Part 2: Client Tasks

•You will need to return the k largest elements in a Vector<DataPoint> sorted in largest to 

smallest order. 

• Note that it’s very easy to get this backwards! pq.dequeue() returns the SMALLEST element in the 

queue, which should go at the END of the vector.

• The vector .reverse() method might be helpful here ☺



Part 2: Client Tasks

Tips / Tricks

•Here’s how you can loop through every DataPoint

in the stream ->

•Because you can only store k elements at a time, 

how can you use the priority queue to your 

advantage?

• When your pq has k elements in it, what’s special 

about the element returned by pq.peek()?



Questions about Top-K?



Part 3: Heap PQ

•In this final part, you’ll be implementing a full priority queue using a binary min heap!

• In this case, we mean that the “most prioritized” element is the element with the smallest value.

• Just like on the sorted array part!

• In order to keep that property in your queue, you will be using a min heap like you’ve seen in 

lecture!

•The lecture from 7/21 is an excellent source for all you’ll need to know about how to 

implement one of these heaps!

•Moreover, the non heap-related code you have may end up looking quite a bit like the code 

already written for you in PQSortedArray!

•Let’s go over a few key points



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

0 1 2 3 4

pq.enqueue(3);

-2 5 7 10



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

-2 5 7 10

0 1 2 3 4

pq.enqueue(3);



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

0 1 2 3 4

pq.enqueue(3);

-2 5 7 10 3



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

0 1 2 3 4

bubbleUp()

-2 5 7 10 3



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

-2 5 7 10 3

0 1 2 3 4

bubbleUp() i = 4
Parent at 

index 1



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

-2 5 7 10 3

0 1 2 3 4

bubbleUp()



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

-2 3 7 10 5

0 1 2 3 4

bubbleUp()



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Remember to update your current index to reflect the swap ☺

-2 3 7 10 5

0 1 2 3 4

bubbleUp() index is 

now 1!



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Remember to update your current index to reflect the swap ☺

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

-2 3 7 10 5



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Remember to update your current index to reflect the swap ☺

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

-2 3 7 10 5

0 1 2 3 4

Done!



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

-2 3 7 10 5

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

-2 3 7 10 5

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

5 3 7 10 -2

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

5 3 7 10 -2

0 1 2 3 4

pq.size() = 4

NOT

5



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

pq.size() = 4
5 3 7 10 -2



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

5 3 7 10 -2



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

i*2+1 i*2+2i

Disclaimer: I’m just using ‘i’ to represent the index of the element we’re 

bubbling down; it has nothing to do with for loops ☺

5 3 7 10 -2



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

i*2+2i

Our friend the face is back!

5 3 7 10 -2

i*2+1



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

i*2+2i

Our friend the face is back!

3 5 7 10 -2

i*2+1



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

0 1 2 3 4

Our friend the face is back!

3 5 7 10 -2



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

• Repeat this process until you are smaller than both of your children, or you have no more children left!

0 1 2 3 4

3 5 7 10 -2



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

• Repeat this process until you are smaller than both of your children, or you have no more children left!

0 1 2 3 4

3 5 7 10 -2

i*2+2i i*2+1



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare it with its children,

who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the children.

• Repeat this process until you are smaller than both of your children, or you have no more children left!

0 1 2 3 4

Done!
3 5 7 10 -2

Why can’t we 

swap with -2?



Part 3: Heap PQ

Helpful hints:

•I recommend writing a swap() method and bubbleUp() and bubbleDown() methods.

•dequeue() is a little more heap-y than enqueue(), so I’d recommend doing enqueue() first to 

get your feet wet!

•Don’t worry too much about ties – swapping identical elements effectively does nothing.

•The debugger and validateInternalState() can be life-savers here!

•Notice that validateInternalState() might be trickier to write here – you now have to verify 

that your state is a correct heap state, not a sorted array state…



Part 3: Heap PQ

One particular edge case I want to point out:

•In dequeue(), be cognizant of the fact that it’s possible to only have one child within the 

bounds of the array!

• In this case, the second child should be ignored. If you don’t check for this, your bubble down will 

read in a potentially bogus value that can cause wacky behavior in your program.



Questions about Part 3?


