

Life after CS106B!

Life after CS106B!

Life after CS106B!

{}

{“Nick”}

{“Kylie”}

{“Trip”}

{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}

Another case of
“generate/count all

solutions” using recursive
backtracking!

●
○

●
○
○

●
○
○

●
○

●

●
○
○

●
○

●
○
○

●
○
○
○

●
○ juror

name bias int
○ Vector<juror>

●
○
○
○

●
○

void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index){
 if (index == allCandidates.size()){
 if (currentBias == 0){
 displayJury(currentJury);
 }
 } else {
 juror currentCandidate = allCandidates[index];

 findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1);
 currentJury.add(currentCandidate);
 findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias,
index + 1);
 currentJury.remove(currentJury.size() - 1);
 }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
 Vector<juror> jury;
 findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);
}

No more expensive
addition/removal of
possible candidates!

●

●

○

●
○

●
○

●
○
○
○

●

○

generateValidMoves()

● generateValidMoves()

○
○

●

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

●

●

●

●

●

○

○
○

●

○
○
○
○

●

○

○
○

●

○
○
○
○

You need at least five US Supreme Court
justices to agree to set a precedent.

What are all the ways you can pick five
justices off the US Supreme Court?

●

●

●

●

●

●
○
○

●

●

●
○
○

●

○

One way to choose 5 elements out
of 9 is to exclude the first

element, and then to choose 5
elements out of the remaining 8.

One way to choose 5 elements out
of 9 is to include the first

element, and then to choose 4
elements out of the remaining 8.

● k Set<string>

●

●

Set<Set<string>>

●

● k Set<string>

●

●

Set<Set<string>>

This is our function return type!

●

{Kagan, Breyer}

{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

●

●

{Kagan, Breyer}

{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

●

●

{Kagan, Breyer}

{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

●

This is our base case! (part 1)

●

{Sotomayor, Thomas}

{}

●

●

{Sotomayor, Thomas}

{}

●

●

{Sotomayor, Thomas}

{}

●

This is our base case! (part 2)

Combinations slides adapted from Keith Schwarz

Combinations slides adapted from Keith Schwarz

This is just the beginning of the tree, but helps us understand our recursive case.

●
○

●
○
○

●
○
○
○

●
○

●
○
○

●
○
○
○

Set<Set<string>> combinationsRec(Set<string>& remaining, int k,

Set<string>& chosen)

Set<Set<string>> combinationsRec(Set<string>& remaining, int k,

Set<string>& chosen)

●
○
○
○

Set<Set<string>> combinationsRec(Set<string>& remaining, int k,

Set<string>& chosen)

●
○
○
○

This is different from our
usual recursion pattern!

Set<Set<string>> combinationsRec(Set<string>& remaining, int k,

Set<string>& chosen)

●
○
○
○

●
○
○

●

●
○
○

●

●
○
○

○
○

●

●

http://web.stanford.edu/class/cs106b/assessments/diagnostic/

●

○

●

○

●

○ O(n!)
O(2^n)

●

○

●

○ O(n!)
O(2^n)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bag is full!

Why doesn’t this work?

Items with lower individual
values may sum to a higher

total value!

This is generating combinations!

Our final backtracking use case: “Pick one best solution”!
(i.e. optimization)

We’ll need to keep track of the total value we’re building up,
but for this version of the problem, we won’t worry about

finding the actual best subset of items itself.

●
○

●
○
○

●
○
○
○

●
○

●
○
○

●
○
○
○

This should look very
similar to our previous
combinations problem!

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● BackpackItem

survivalValue weight

● items

targetWeight

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● BackpackItem

survivalValue weight

● items

targetWeight

We need a helper function!

●

int fillBackpackHelper(Vector<BackpackItem>& items,

 int capacityRemaining, int curValue,

 int index);

index

items

●
○
○
○

●
○

○

What if we wanted to know what combination of items
resulted in the best value?

●

●

●

●

●

●

●

●

●

●
○

○

○

●
○

○

○

●
●
●

●
●

●
●

Life after CS106B!

Life after CS106B!

