Recursive Optimization and
Review

What has been the most interesting application of
recursion that you've encountered so far?
(put your answers the chat)
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(recursive backtracking with data structures)



Subsets



Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:
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What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The set you've built so far
o The remaining elements in the original set



Decision tree

Don't include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}
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Subsets Summary

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

e The subset problem contains themes we’ve seen in backtracking recursion:
o Building up solutions as we go down the decision tree
o Using a helper function to abstract away implementation details



Application: Choosing
an Unbiased Jury



What defines our jury selection decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given candidate in our jury?

e Options at each decision (branches from each node):
o Include candidate
o Don’tinclude candidate

e Information we need to store along the way:
o The collection of candidates making up our jury so far
o The remaining candidates to consider
o The sum total bias of the current jury so far



Jury Selection Pseudocode

e Problem Setup

o Assume that we have defined a custom juror struct, which packages up important information
about a juror (their name and their bias, represented as an int)

o Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want
to print out all possible unbiased juries that can be formed

® Recursive Case

o Select a candidate that hasn't been considered yet.

o  Try notincluding them in the jury, and recursively find all possible unbiased juries.
o Tryincluding them in the jury, and recursively find all possible unbiased juries.

e Base Case

o  Once we're out of candidates to consider, check the bias of the current jury. If O, display them!



Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index) {

if (index == allCandidates.size()) { y
if (currentBias == 0) { /Vo more eXPe"SVVe
displayJury (currentJury) ; Lo
: addition/removal of
} else { . .
juror currentCandidate = allCandidates[index]; Po.f'glé/e Cﬂhdu/atef/

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias, index + 1);
currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias,
index + 1);

currentJury.remove (currentJury.size() - 1);

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);



Jury Selection Summary

e Being able to enumerate all possible subsets and inspect subsets with certain
constraints can be a powerful problem-solving tool.

e Maintaining an index of the current element under consideration for
inclusion/exclusion in a collection is the most efficient way to keep track of the

decision making process for subset generation
o Hint: This will be important for those of you that attempt the backtracking challenge problem on
Assignment 3!




Maze Solving with DFS



What defines our maze decision tree?

e Decision at each step (each level of the tree):
o  Which valid move will we take?

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

e Information we need to store along the way:
o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited
o Our current location



Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function

e Recursive case: lterate over valid moves from generateValidMoves () and try adding
them to our path
o If any recursive call returns true, we have a solution
o If all fail, return false

e Base case: We can stop exploring when we’ve reached the exit » return true if the
current location is the exit



BFS vs. DFS comparison



https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

BFS vs. DFS comparison

BFS is typically iterative while DFS is naturally expressed recursively.

Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.



How can we use recursive
backtracking to find the best
solution to very challenging

problems?



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

O O O O



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem

o We can find one specific solution to a problem or prove that one exists

e There are many, many examples of specific problems that we can solve,

including

o  Generating permutations
o  Generating subsets

o  And many, many more
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Subsets vs. Combinations

e Our goal: We want to pick a combination of 5 justices out of a group of 9.
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Subsets vs. Combinations

e Our goal: We want to pick a combination of 5 justices out of a group of 9.

e This sounds very similar to the problem we solved when we generated subsets
— these 5 justices would be a subset of the overall group of 9.

e What distinguishes a combination from a subset?
o Combinations always have a specified unlike subsets (which can be any size)
o We can think of combinations as

e Could we use the code from yesterday, generate all subsets, and then filter out

all those of size 57
o We could, but that would be inefficient. Let's develop a better approach for combinations!












Generating Combinations
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Generating Combinations
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Writing functions that build combinations

e Each combination of k strings can be represented as a Set<string>.

e Before, we were content with just printing out all solutions. But what if we
wanted to store all of them to be able to do something with them later?

e We want to return a container holding all possible combinations:

Set<Set<string>>

e It’s not that unusual to see containers nested this way!
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Writing functions that build combinations

® Suppose we get to the following scenario:

Pick O more Justices out of:
{Kagan, Breyer}
Chosen so far:
{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

e There’s no need to keep looking! What do we return in this case?
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Writing functions that build combinations

® Suppose we get to the following scenario:

Pick O more Justices out of:
{Sotomayor, Thomas}
Chosen so far:

{}

e There’s no need to keep looking! What do we return in this case?




Writing functions that build combinations

® Suppose we get to the following scenario:

Pick O more Justices out of:
{Sotomayor, Thomas}
Chosen so far:

{}

e There’s no need to keep looking! We can return an empty set.




Writing functions that build combinations

® Suppose we get to the following scenario:

Pick O more Justices out of:
{Sotomayor, Thomas}
Chosen so far:

{}

e There’s no need to keep looking! We can return an empty set.

This i our bace case! [,barf 2)



What about our combinations decision tree?

Pick 5 Justices out of
{Kagan, Breyer, ..., Roberts}

Chosen so far: { }

Include Exclude
Elena Kagan Elena Kagan

Pick 4 Justices out of Pick 5 Justices out of
{ Breyer, ..., Roberts } { Breyer, ..., Roberts }
Chosen so far: { Kagan } Chosen so far: { }

Combinations clides adapted from Keith Schware




What about our combinations decision tree?

Pick 5 Justices out of
{Kagan, Breyer, ..., Roberts}

Chosen so far: { }

Include Exclude
Elena Kagan Elena Kagan
Pick 4 Justices out of Pick 5 Justices out of
{ Breyer, ..., Roberts } { Breyer, ..., Roberts }

Chosen so far: { Kagan } Chosen so far: { }

This ic just the beginning of the Tree, but helps ve understand our recurcive cace.

Combinations clides adapted from Keith Schware



What defines our combinations decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our combination?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:
o The combination you’ve built so far
o The remaining elements to choose from
o The remaining number of spots left to fill



What defines our combinations decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our combination?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The combination you’ve built so far
o The remaining elements to choose from



Pseudocode

Set<Set<string>> combinationsRec(Set<string>& remaining, s
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Pseudocode

Set<Set<string>> combinationsRec(Set<string>& remaining, int Kk,
Set<string>& chosen)

e Recursive case:
o Choose: Pick an element in remaining.
o Explore: Try including and excluding the element and store resulting sets.
o Return the the combined returned sets from both inclusion and exclusion.




Pseudocode
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Set<string>& chosen)

e Recursive case:
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Pseudocode

Set<Set<string>> combinationsRec(Set<string>& remaining, int Kk,
Set<string>& chosen)

e Recursive case:
o Choose: Pick an element in remaining.
o Explore: Try including and excluding the element and store resulting sets.
o Return the the combined returned sets from both inclusion and exclusion.

e Base cases:
o No more remaining elements to choose from = return empty set
o No more space in chosen (k is maxed out) = return set with chosen



Let's code it!



Takeaways

e Making combinations is very similar to our recursive process for generating
subsets!

e The differences:
o We’re constraining the subsets’ size.
o We’re building up a set of all valid subsets of that particular size (i.e.
combinations).

e Instead of printing out subsets in our base case, we have to return individual
sets in our base case and then build up and return our resulting set of sets in
our recursive case



Announcements



Announcements

e The is coming up at the end of this week.
o You will have a 72-hour period of time from Friday to Sunday to complete the diagnostic.
o The diagnostic is designed to take about an hour and a half to complete, but you can have up
to 3 hours to work on it if you so choose.
o The diagnostic will be administered digitally using BlueBook.
o A practice diagnostic and many additional review materials have been posted on the diagnostic

page.

e Assignment 3 is due on Thursday, July 16 at 11:59pm.

e There will be a diagnostic review session on Thursday night, likely from
7-8:30pm. We're still working on finalizing the details of who will host it and
whether or not minors will be able to attend live.


http://web.stanford.edu/class/cs106b/assessments/diagnostic/

Recursive Optimization



"Hard" Problems
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e There are many different categories of problems in computer science that are

considered to be "hard" to solve.
o Formally, these are known as "NP-hard" problems. Take CS103 to learn more!
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o  Often times these problems involve finding permutations (O (n!) possible solutions) or
combinations (0 (27n) possible solutions)



"Hard" Problems

e There are many different categories of problems in computer science that are

considered to be "hard" to solve.
o Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

e [orthese categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to and select the best

one.
o  Often times these problems involve finding permutations (O (n!) possible solutions) or
combinations (0 (27n) possible solutions)

e Backtracking recursion is an elegant way to solve these kinds of problems!
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e Imagine yourselfin a new lifestyle as a professional wilderness survival expert

e You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

® You have a list full of supplies (each of which has a survival value and a weight
associated with it) to choose from.
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The Knapsack Problem

e Imagine yourselfin a new lifestyle as a professional wilderness survival expert

e You are about to set off on a challenging expedition, and you need to pack
your knapsack (or backpack) full of supplies.

® You have a list full of supplies (each of which has a survival value and a weight
associated with it) to choose from.

e Your backpack is only sturdy enough to hold a certain amount of weight.

e Question: How can you of your backpack?



Breakout Rooms: Solve
a small knapsack
example



The "Greedy" Approach

What happens if you always choose to include the item with the highest value that
will still fit in your backpack?

Rope Axe Tent Canned food
- Value: 3 - Value: 4 - Value: 5 - Value: 6
- Weight: 2 - Weight: 3 - Weight: 4 - Weight: 5
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The "Greedy" Approach

What happens if you always choose to in Why doecnt thic work? [ osi value that
will still fit in your backpack?

Rope Axe Tent Canned food
- Value: 3 - Value: 4 - Value: 5 - Value: 6
- Weight: 2 - Weight: 3 - Weight: 4 - Weight: 5




The Greedy Approacf Iteme with lower individual

What happens if you always choose values may sum to a higher fost value that
will still fit in your backpack? total value!

Rope Axe Tent Canned food
- Value: 3 - Value: 4 - Value: 5 - Value: 6
- Weight: 2 - Weight: 3 - Weight: 4 - Weight: 5




The Recursive Approach

Idea: Enumerate all subsets of weight <=5 and pick the one with best total

value.
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The Recursive Approach

Idea: Enumerate all combinations and

Our final backtracking vee case: ‘Pick one best colvtion™

(i.e. optimization)




The Recursive Approach

Idea: Enumerate all combinations and

Well need to keep track of the fotal valve were building up,

but for thic version of the problem, we won't worry about
finding the actual best cubset of items itcelf.




What defines our knapsack decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given item in our combination?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:
o The total value so far
o The remaining elements to choose from
o The remaining capacity (weight) in the backpack



What defines our knapsack decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given item in our combination?

e Options at each decision (branches from each node):
o Include element

o Don’tinclude element Thic chovld look very

. cimilar to our previoug
e Information we need to store along the way: p

o The total value so far
o The remaining elements to choose from
o The remaining capacity (weight) in the backpack

combination proé/em./



Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

e Assume that we have defined a custom BackpackItem struct, which packages
up an item’s survivalValue (int) and weight (int).

e We need to return the max value we can get from a combination of items
under targetWeight.




Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

e Assume that we have defined a custom BackpackItem struct, which packages
up an item’s survivalValue (int) and weight (int).

e We need to return the max value we can get from a combination of items
under targetWeight.

We need a helper Function!



Pseudocode

e We need a helper function!

int fillBackpackHelper(Vector<BackpackItem>& items,

int capacityRemaining, int curValue,
int index);

For efficiency, we’ll use an index to keep track of which items we’ve already
looked at inside items (like yesterday’s jury selection problem).




Pseudocode

e Recursive case:
o Select an unconsidered item based on the index.
o Recursively calculate the values both with and without the item.
o Return the higher value.

e Base cases:
o No remaining capacity in the knapsack = return O
(not a valid combination with weight <=5)
o No more items to choose from = return current value



Let’s code it



Let’s code it

(time-permitting)

What if we wanted to know what combination of iteme
resulted in the beet value?



Takeaways

e Finding the best solution to a problem (optimization) can often be thought of as
an additional layer of complexity/decision making on top of the recursive
enumeration we've seen before

e For "hard" problems, the best solution can only be found by enumerating all
possible options and selecting the best one.

e Creative use of the return value of recursive functions can make applying
optimization to an existing function straightforward.



Recursion Wrap-up



Closing Thoughts on
Recursion



You now know how to use
recursion to

that can lead to



You’ve seen how to use recursive
backtracking to

, which you
can use to find the



You've seen how 1to use
recursive backtracking to

and, if so, to



Congratulations on making it this far!



Organizing Your
Recursive Toolbox



Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e Initial call to recursive function
produces final solution



Backtracking recursion: Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with )
large data structures (enumeration)
o Explicit unchoose step by "undoing" 2. Find one solution (OI’ prove
prior modifications to structure .
o E.g. Generating subsets (one set existence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore
o Pass by value; usually when memory
constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy
o E.g. Building up a string over time

General examples of things you can do:

- Combinations
- etc.



We’ve seen lots of different backtracking strategies...

Questions to ask yourself when planning your strategy:

e What does my decision tree look like? (decisions, options, what to keep track of)
e What are our base and recursive cases?
What’s the provided function prototype and requirements? Do we need a helper
function?
Do we care about returning or keeping track of the path we took to get to our solution?
e Which of our three use cases does our problem fall into? (generate/count all solutions,
find one solution/prove its existence, pick one best solution)
What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
What are we building up as our “many possibilities” in order to find our solution?
(subsets, permutations, combinations, or something else)



What's next?



Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

real-world
algorithms

Life after CS1068/

algorithmic recursive
analysis problem-solving
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Classes and Object-Oriented Programming

class objects
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