Recursive Backtracking
Revisited

What has been your favorite part of the first 3
weeks of the course?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

How do recursive

TOday’S backtracking solutions look
guestion

different when data
structures are involved?

Review

Today'’s
topics

Implementing Subsets

. Selecting Unbiased Juries

. Solving Mazes with DFS

Review

(intro to recursive backtracking)

Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e |Initial call to recursive function
produces final solution

Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

O O O O

Permutations

What defines our permutations decision tree?

e Decision at each step (each level of the tree):
o What is the next letter that is going to get added to the permutation?

e Options at each decision (branches from each node):

o One option for every remaining element that hasn't been selected yet

e Information we need to store along the way:
o The permutation you've built so far
o The remaining elements in the original sequence

Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Permutations Code

Dec:’r/ouc yez‘ D o
void listPermutations(string s) { to éebhadé ecisions
listPermutationsHelper(s, ""); a/reo.a’y made
}
void listPermutationsHelper (string remaining, string soFar) { 7}94&”

if (remaining.empty()) { €

cout << soFar << endl; No decicions remain O,btl'0h§’ for next decicion

} else {
for (int i = 0; i < remaining.length(); i++) {)
char nextLetter = remaining[i];
string rest = remaining.substr(0, i) + remaining.substr (i+l); i

listPermutationsHelper (rest, soFar + nextLetter);

Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied to generate permutation can be
thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and
e Backtracking recursion can have at each level

e Use of helper functions and initial empty params that get built up is common

Application: Shrinkable
Words

What defines our shrinkable decision tree?

e Decision at each step (each level of the tree):
o What letter are going to remove?

e Options at each decision (branches from each node):
o The remaining letters in the string

e Information we need to store along the way:
o The shrinking string

What defines our shrinkable decision tree?

cart
. / \ .
art crt cat car

gl e 2= | Sse g || Se o | e

m at ar it ¢t c¢cr at ct ca ar cr ca
N gy Jh N 4% IS Iy I g VAL L

il t a r a o i i|e rcC e BE e Nl e e

Examples from Chris bregg and Keith Schwarz

Takeaways

e This is another example of copy-edit-recurse to choose, explore, and then
implicitly unchoose!

e In this problem, we’re using backtracking to find if a solution exists.
o Notice the way the recursive case is structured:

for all options at each decision point:
1f recursive call returns true:
return true;
return false i1f all options are exhausted;

How do recursive backtracking
solutions look different when
data structures are involved?

Subsets

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

In general, a "cubcet” ic any
cubcollection of elements from an

initial collection of options.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

Even ﬂwug/\ we may not
care about thie ‘team,” the
emply set i¢ a subcet of our

original cet!

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
A¢ humans, it m:’yﬁzf be
eaciest to think about all
teams (cubsets) of a

partic viar ¢ize.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{"Nick”} Ac humans, it might be

E“ﬁy}li}} eaciest to think about all
rip

teams (cubsets) of a

partic viar ¢ize.

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{*Nick”} A¢ humans, it m:’yﬁtf be

E“ﬁy}li}} eaciest to think abouvt all
rip

teams (cubsets) of a

{“'Nick,.’, "‘Kylie.’.'}
partic viar ¢ize.

{“NiCk”, ffTr,ip.’)}
{CCKylie”, CCTr\ip,,}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{"Nick”} A¢ humans, it m:’gkt be

E“ﬁy}li}} eaciest to think about all
rip

(“Nick”, “Kylie”} teams (cubsets) of a

{“NiCk”, “Tl"ip”} P&U"?‘I‘CU/&{F Qize.

{fnylie’,, f"Tr\ip,,}
{“NiCk,’, CCKylie)J’ CCTripJ’}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{"Nick®} Another case of
E:ﬁ(i:i;} ‘9enerate/count all
{“Nick”, “Kylie”} colutions” using recursive
{“Nick”, “Trip”} backtracking!

{fnylie’,, f"Tr\ip,,}
{“NiCk,’, CCKylie)J’ CCTripJ’}

Discuss in breakouts:

What are the possible subsets of the choices {"ct++,
"python", "java", "javascript"}?

What potential recursive insights about generating
subsets can you glean from this example?
[Time-permitting] Can you come up with a base case and
recursive case for generating subsets?

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Nick”} For computerc generating
{“Kylie”} cubgsets (and thinking abovt
{*Trip”} decicions), there'c another

{“Nick”, “Kylie”}
{“N]'.Ck”, “Tr‘ip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

pattern we might notice...

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{*Kylie”} Half the svbeets contain
{“Tr‘ip”} “« ok ’

{fnylie’,, f"Tr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{“Nick”}

HalFf the cvbgeets contain
{“Tr‘ip”} ‘K}//,'e ”

{“NiCk”, ﬂ’Tr,ip.”}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{“Nick”}
{*Kylie”} Half the svbeets contain

“Tk;P 7
{“Nick”, “Kylie”}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

“Nick”
E“Kylie’};} Hﬁ/{l fAB X'Uéfefg' tha]‘
{“Tr‘ip”} 00’!7‘&/.1'\ “TI’I'P ”R/S'U contain
{*“Nick”, “Kylie”} “Nick”

{fnylie’,, f"Tr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

“Nick”
E“K;;ie’};} Hﬁ/{l fAB X'Uéfefg' tha]‘
{“Tr‘ip”} 00"7‘&/‘#\ 507‘/1 “TVI.P ”Ahd

(“Nick”, “Kylie”} ‘Mick” contain ‘Kylie”
{“NiCk”, ffTr,ip.’)}
{fnylie’J, f‘Tr\ip,J}

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Nick”}

{“Kylie”}

{*“Trip”}

{“Nick”, “Kylie”}
{“N]'.Ck”, “Tr‘ip”}
{“Kylie”, “Trip”}
{“Nick”, “Kylie”, “Trip”}

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The set you've built so far
o The remaining elements in the original set

Decision tree

Don’t include Nick

'

Empty set

Include Nick

'

&

Decision tree

Don’t include Nick

'

Empty set

Include Nick

'

No Kylie

&

-

&

Kylie

ol Al

Decision tree

Don’t include Nick

'

Empty set

Include Nick

'

No Kylie

&

Kylie

-

&

No Trip ﬁ'iﬂ Trip

R wmw

Decision tree

Don’t include Nick Empty set Include Nick

! '

No Kylie ﬁ' Kylie

el IaleL s
el B
o] (e (ee |am

Decision tree

No Kylie

No Trip Trip

Don’t include Nick

Kylie

Empty set

Include Nick

No Trip ﬁa Trip

No Trip

No Kylie

|
_l

Trip

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element

o Don’tinclude element

e Information we need to store along the way:
o The set you've built so far

Decision tree

Don’t include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

No Kylie Kylie No Kylie H Kylie

Han

No Trip Trip No Trip !a Trip No Trip ﬂ Trip No Trip H m Trip

Decision tree

Don't include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

No Kylie Kylie lNO ke H T"y"e Remaining: {“Kylie”, “Trip”}

No Trip Trip No Trip !a Trip No Trip ﬂ Trip No Trip H m Trip

Decision tree

Don’t include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

r’“ Kylle T"V"’ lNo i H TKWG Remaining: {“Kylie”, “Trip”}

: : - : ; - : . - : Remaining: {“Trip”}
No Trip Trlj Nofp_ m Tnj No Trip ﬁ mpl N(ITE H m ﬁpl

Decision tree

Don’t include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

r’“ Kylle T"V"’ lNo i H TKWG Remaining: {“Kylie”, “Trip”}

NIWL ml Nofp' m ml NIT,,J ﬂ Epl NITEH!JB)l Remaining: {(“Trip”}
B || & ! 2R SR (g Remaining: {

Decision tree

Don’t include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

No Kylie Kylie No Kylie H Kylie Remalnlng, {“ Kylle” “Trip”}

NIWL ml Nofp' m ml NIT,,J ﬂ Epl NITEH!JB)l Remaining: {(“Trip”}
B || & wR | & 2R SR (g Remaining: {

: No people remaining to choose from!

Decision tree

Don’t include Nick Empty set Include Nick Remaining: {“Nick”, “Kylie”, “Trip”}

: l

P i No Kyli » Kyli . e « RIS)
horte | fre - H = Remaining: {“Kylie”, “Trip”)

. : . : , " : i - ; Remaining: {(“Trip”}
No Trip lrlp1 NOITE m Tnj No Trip ﬁ Igpl NITn_p H m Tnnp

WK S WR | Ew Remaining: {
3

: Pick someone in the set. Choose to include or not include them.

Let’s code it!

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step

o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
CAoage listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éaqpﬁgke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
(,barf 1) ;

listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;

// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éaqpﬁpke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
(,barf 2) :

listSubsetsHelper(remaining, chosen); // add clem 1o chosen
chosen = chosen - elem;

// add this element back to possible choices
remaining = remaining + elem;

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
ézﬁpﬁbft listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
(’.e. am/o) chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

(nchooce

Takeaways

e This is our first time seeing an explicit “unchoose” step

o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
" L // remove this element from possible choices
Without this remaining = remaining - elem;

qub,tue could listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
other c¢ide of chosen = chosen - elem;
// add this element back to possible choices
the free —_ —
remaining = remaining + elem;

not explore the

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!

e It’s important to consider not only decisions and options at each decision, but
also to keep in mind what information you have to keep track of with each
recursive call. This might help you define your base case.

e The subset problem contains themes we’ve seen in backtracking recursion:
o Building up solutions as we go down the decision tree
o Using a helper function to abstract away implementation details

Application: Choosing
an Unbiased Jury

Jury Selection

e The process of jury selection involves processing a large pool of candidates
that have been called for jury duty, and selecting some small subset of those
candidates to serve on the jury.

Jury Selection

e The process of jury selection involves processing a large pool of candidates
that have been called for jury duty, and selecting some small subset of those
candidates to serve on the jury.

e When selecting members of a jury, each individual person will come in with
their own biases that might sway the case.

Jury Selection

e The process of jury selection involves processing a large pool of candidates
that have been called for jury duty, and selecting some small subset of those
candidates to serve on the jury.

e When selecting members of a jury, each individual person will come in with
their own biases that might sway the case.

e Ideally, we would like to select a jury that is

Jury Selection

e The process of jury selection involves processing a large pool of candidates
that have been called for jury duty, and selecting some small subset of those
candidates to serve on the jury.

e When selecting members of a jury, each individual person will come in with
their own biases that might sway the case.

e Ideally, we would like to select a jury that is

° — let's apply the
code that we just wrote!

What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The set you've built so far
o The remaining elements in the original set

What defines our decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given in our ?

e Options at each decision (branches from each node):
o Include
o Don’tinclude

e Information we need to store along the way:

o The of making up our so far
o The remaining to consider

Jury Selection Pseudocode

e Problem Setup

o Assume that we have defined a custom juror struct, which packages up important information
about a juror (their name and their bias, represented as an int)

o Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want
to print out all possible unbiased juries that can be formed

Jury Selection Pseudocode

e Problem Setup
o Assume that we have defined a custom juror struct, which packages up important information
about a juror (their name and their bias, represented as an int)

o Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want
to print out all possible unbiased juries that can be formed

® Recursive Case

o Select a candidate that hasn't been considered yet.

o Try notincluding them in the jury, and recursively find all possible unbiased juries.
o Tryincluding them in the jury, and recursively find all possible unbiased juries.

Jury Selection Pseudocode

e Problem Setup

o Assume that we have defined a custom juror struct, which packages up important information
about a juror (their name and their bias, represented as an int)

o Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want
to print out all possible unbiased juries that can be formed

® Recursive Case

o Select a candidate that hasn't been considered yet.

o Try notincluding them in the jury, and recursively find all possible unbiased juries.
o Tryincluding them in the jury, and recursively find all possible unbiased juries.

e Base Case

o Once we're out of candidates to consider, check the bias of the current jury. If O, display them!

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);
currentJury.add (currentCandidate) ;
findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);

currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {

if (allCandidates.isEmpty()) { .
if (currentBias == 0) { He/per fU”CtlU": Ext"a
displayJury (currentJury) ;
) variable to keep track
} else {
juror currentCandidate = allCandidates|[0]; af tafa/ b;as'

allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJury (currentJury) ; Bag'e case: On/y d; f,b/ay
}
} else { | | Juries with no total bias
juror currentCandidate = allCandidates[O0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) { . .
if (currentBias == 0){ Recursive case: Consider
displayJury (currentdury) ;

} juries both with and

} else {
juror currentCandidate = allCandidates|[O0]; WI.tAUUt tl"’s, Per‘,o”

allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias) ;
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

}

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection
Optimization

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);
currentJury.add (currentCandidate) ;
findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);

currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection Code

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) {

if (currentBias = 0){ Vector addition/removal can
displayJury (currentdury) ;
e ¢ be an expensive operation.
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ; CAh We ‘{0 éetfe"?

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);

currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);
currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Optimizing Subset Creation

e The core component of subset generation includes visiting each element
once, and making a decision about whether to include it or not

Optimizing Subset Creation

e The core component of subset generation includes visiting each element
once, and making a decision about whether to include it or not

e Previously, we have done so by arbitrarily picking the "first" element in the
collection as the one under consideration, and then removed it (expensive)
from the collection for future recursive calls.

Optimizing Subset Creation

e The core component of subset generation includes visiting each element
once, and making a decision about whether to include it or not

e Previously, we have done so by arbitrarily picking the "first" element in the
collection as the one under consideration, and then removed it (expensive)
from the collection for future recursive calls.

e Key ldea: Instead of modifying the collection of elements, let's just keep track

of our current place in the collection (index of the element that is currently
under consideration).

Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);
currentJury.add (currentCandidate) ;
findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);

currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0);

}

Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index) {
if (allCandidates.isEmpty()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);
currentJury.add (currentCandidate) ;
findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);

currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

}

Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index) {
if (index == allCandidates.size()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates|[0];
allCandidates.remove (0) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias);
currentJury.add (currentCandidate) ;
findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias);

currentJury.remove (currentJury.size() - 1);

allCandidates.insert (0, currentCandidate) ;

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

}

Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index) {
if (index == allCandidates.size()) {
if (currentBias == 0) {
displayJury (currentdury) ;
}
} else {
juror currentCandidate = allCandidates[index];

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias, index + 1)
currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias,
index + 1) ;

currentJury.remove (currentJury.size() - 1);

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

Jury Selection Code v2.0

void findAllUnbiasedJuriesHelper (Vector<juror>& allCandidates, Vector<juror>& currentJury, int
currentBias, int index) {

if (index == allCandidates.size()) { y
if (currentBias == 0) { /Vo more eXPe"SVVe
displayJury (currentJury) ; Lo
: addition/removal of
} else { . .
juror currentCandidate = allCandidates[index]; Po.f'glé/e Cﬂhdu/atef/

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias, index + 1);
currentJury.add (currentCandidate) ;

findAllUnbiasedJuriesHelper (allCandidates, currentJury, currentBias + currentCandidate.bias,
index + 1);

currentJury.remove (currentJury.size() - 1);

void findAllUnbiasedJuries (Vector<juror>& allCandidates) {
Vector<juror> jury;
findAllUnbiasedJuriesHelper (allCandidates, jury, 0, 0);

Takeaways

e Being able to enumerate all possible subsets and inspect subsets with certain
constraints can be a powerful problem-solving tool.

e Maintaining an index of the current element under consideration for
inclusion/exclusion in a collection is the most efficient way to keep track of the

decision making process for subset generation
o Hint: This will be important for those of you that attempt the backtracking challenge problem on
Assignment 3!

Announcements

Announcements

e Assignment 3 was released last Thursday evening and is due on Thursday,
July 16 at 11:59pm.

e Section leaders are currently working on grading and providing feedback on
Assignment 2 submissions — feedback will be released by Wednesday night.

e The is coming up at the end of this week.
o You will have a 72-hour period of time from Friday to Sunday to complete the diagnostic.
o The diagnostic is designed to take about an hour and a half to complete, but you can have up
to 3 hours to work on it if you so choose.
o The diagnostic will be administered digitally using BlueBook.
o A practice diagnostic and review materials have been posted on the diagnostic page.

http://web.stanford.edu/class/cs106b/assessments/diagnostic/

Revisiting mazes

Solving mazes with breadth-first search (BFS)

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we're at the end of the maze

Solving mazes recursively

e Start at the entrance

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nerth—SouthtEastorWest

Dead end!

(cannot g0 North,

South, Eact, or West) -
finish

Solving mazes recursively

e Start at the entrance

e Take one step Nefth-SeuthrEastorWest

We must go back one
ctep.

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, Seuth, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, Seuth, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nerth—SouthtEastorWest

Dead end!

(cannot g0 North,

South, Eact, or West) -
finish

Solving mazes recursively

e Start at the entrance

e Take one step Nefth-SeuthrEastorWest

We must go back one
ctep.

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step Nefth, South, East, or West

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

- finish

Solving mazes recursively

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

End of the maze!

- finish

Solving mazes recursively

e Base case: If we're at the end of the maze, stop
e Recursive case: Explore North, South, East, then West

- finish

What defines our maze decision tree?

e Decision at each step (each level of the tree):
o Which valid move will we take?

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

e Information we need to store along the way:
o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited
o Our current location

What defines our maze decision tree?

e Decision at each step (each level of the tree): Exercise for home:

o Which valid move will we take? Draw the decicion tree.

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

e Information we need to store along the way:
o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited
o Our current location

Pseudocode

e Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

What defines our maze decision tree?

e Decision at each step (each level of the tree):
o Which valid move will we take?

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited
o Our current location

Pseudocode

e Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

We need a helper function!

Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.

Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function

Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function

e Recursive case: lterate over valid moves from generateValidMoves () and try adding
them to our path

o If any recursive call returns true, we have a solution
o If all fail, return false

Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function

e Recursive case: lterate over valid moves from generateValidMoves () and try adding
them to our path
o If any recursive call returns true, we have a solution
o If all fail, return false

e Base case: We can stop exploring when we’ve reached the exit » return true if the
current location is the exit

Let’s code it!

Recursion is depth-first search
(DFS)!

BFS vs. DFS comparison Which do you think will be faster?

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

BFS vs. DFS comparison

e BFS is typically iterative while DFS is naturally expressed recursively.

e Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

e BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

e DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.

Summary

Backtracking recursion: Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with)
large data structures (enumeration)
o Explicit unchoose step by "undoing" 2. Find one solution (OI’ prove
prior modifications to structure .
o E.g. Generating subsets (one set existence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore
o Pass by value; usually when memory
constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy
o E.g. Building up a string over time

General examples of things you can do:

- Combinations
- etc.

We’'ve seen lots of different backtracking strategies...

Questions to ask yourself when planning your strategy:

e What does my decision tree look like? (decisions, options, what to keep track of)
e What are our base and recursive cases?
What’s the provided function prototype and requirements? Do we need a helper
function?
Do we care about returning or keeping track of the path we took to get to our solution?
e Which of our three use cases does our problem fall into? (generate/count all solutions,
find one solution/prove its existence, pick one best solution)
What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
What are we building up as our “many possibilities” in order to find our solution?
(subsets, permutations, or something else)

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

Recursive optimization: Find the best solution

