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Today’s 
question

How do recursive 
backtracking solutions look 
different when data 
structures are involved?



Today’s 
topics

1. Review

2. Implementing Subsets

3. Selecting Unbiased Juries

4. Solving Mazes with DFS



Review
(intro to recursive backtracking)



Two types of recursion

Basic recursion

● One repeated task that builds up 
a solution as you come back up 
the call stack

● The final base case defines the 
initial seed of the solution and 
each call contributes a little bit to 
the solution

● Initial call to recursive function 
produces final solution

Backtracking recursion

● Build up many possible solutions 
through multiple recursive calls at 
each step

● Seed the initial recursive call with 
an “empty” solution

● At each base case, you have a 
potential solution



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



Permutations



What defines our permutations decision tree?

● Decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

● Options at each decision (branches from each node):
○ One option for every remaining element that hasn't been selected yet
○ Note: The number of options will be different at each level of the tree!

● Information we need to store along the way:
○ The permutation you’ve built so far
○ The remaining elements in the original sequence



Decision tree: Find all permutations of "cat" 
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Permutations Code

void listPermutations(string s){
   listPermutationsHelper(s, "");
}

void listPermutationsHelper(string remaining, string soFar) {
   if (remaining.empty()) {
       cout << soFar << endl;
   } else {
       for (int i = 0; i < remaining.length(); i++) {
           char nextLetter = remaining[i];
           string rest = remaining.substr(0, i) + remaining.substr(i+1);
           listPermutationsHelper(rest, soFar + nextLetter);
       }
   }
}

Decisions yet 
to be made Decisions 

already made

Recursive case: Try all 
options for next decisionBase case: No decisions remain



Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in 
backtracking recursion that we applied to generate permutation can be 
thought of as "copy, edit, recurse"

● At each step of the recursive backtracking process, it is important to keep 
track of the decisions we've made so far and the decisions we have left to 
make

● Backtracking recursion can have variable branching factors at each level

● Use of helper functions and initial empty params that get built up is common



Application: Shrinkable 
Words



What defines our shrinkable decision tree?

● Decision at each step (each level of the tree):
○ What letter are going to remove?

● Options at each decision (branches from each node):
○ The remaining letters in the string

● Information we need to store along the way:
○ The shrinking string



What defines our shrinkable decision tree?

Examples from Chris Gregg and Keith Schwarz



Takeaways

● This is another example of copy-edit-recurse to choose, explore, and then 
implicitly unchoose!

● In this problem, we’re using backtracking to find if a solution exists.
○ Notice the way the recursive case is structured:

for all options at each decision point:

if recursive call returns true:

return true;

return false if all options are exhausted;



How do recursive backtracking 
solutions look different when 
data structures are involved?



Subsets
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In general, a "subset" is any 
subcollection of elements from an 

initial collection of options.
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care about this “team,” the 
empty set is a subset of our 

original set!
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or 
subsets, of those people:

{}

{“Nick”}

{“Kylie”}

{“Trip”}

{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}

Another case of 
“generate/count all 

solutions” using recursive 
backtracking!



Discuss in breakouts:
What are the possible subsets of the choices {"c++", 
"python", "java", "javascript"}?
What potential recursive insights about generating 
subsets can you glean from this example? 
[Time-permitting] Can you come up with a base case and 
recursive case for generating subsets?



Subsets
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For computers generating 
subsets (and thinking about 
decisions), there’s another 
pattern we might notice...
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or 
subsets, of those people:

{}
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or 
subsets, of those people:

{}

{“Nick”}

{“Kylie”}

{“Trip”}

{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}

🤔
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What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set
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Decision tree
Empty set Include NickDon’t include Nick

No Kylie Kylie



Decision tree
Empty set Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip



Decision tree
Empty set Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip No Trip Trip



Decision tree
Empty set Include NickDon’t include Nick

No Kylie Kylie

No Trip Trip No Trip Trip

No Kylie Kylie

No Trip Trip No Trip Trip



What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set
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Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Base case: No people remaining to choose from!



Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Recursive case: Pick someone in the set. Choose to include or not include them.



Let’s code it!
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listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Choose



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore 
(part 1)



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore 
(part 2)



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explicit
Unchoose
(i.e. undo)



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Without this 
step, we could 
not explore the 
other side of 
the tree



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

● It’s important to consider not only decisions and options at each decision, but 
also to keep in mind what information you have to keep track of with each 
recursive call.  This might help you define your base case.



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

● It’s important to consider not only decisions and options at each decision, but 
also to keep in mind what information you have to keep track of with each 
recursive call.  This might help you define your base case.

● The subset problem contains themes we’ve seen in backtracking recursion:
○ Building up solutions as we go down the decision tree
○ Using a helper function to abstract away implementation details



Application: Choosing 
an Unbiased Jury
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that have been called for jury duty, and selecting some small subset of those 
candidates to serve on the jury. 
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Jury Selection

● The process of jury selection involves processing a large pool of candidates 
that have been called for jury duty, and selecting some small subset of those 
candidates to serve on the jury. 

● When selecting members of a jury, each individual person will come in with 
their own biases that might sway the case.

● Ideally, we would like to select a jury that is unbiased (sum of all biases is 0)

● An unbiased jury is just a subset with a special property – let's apply the 
code that we just wrote!



What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set



What defines our jury selection decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given candidate in our jury?

● Options at each decision (branches from each node):
○ Include candidate
○ Don’t include candidate

● Information we need to store along the way:
○ The collection of candidates making up our jury so far
○ The remaining candidates to consider
○ The sum total bias of the current jury so far



Jury Selection Pseudocode

● Problem Setup
○ Assume that we have defined a custom juror struct, which packages up important information 

about a juror (their name and their bias, represented as an int)
○ Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want 

to print out all possible unbiased juries that can be formed
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Jury Selection Pseudocode

● Problem Setup
○ Assume that we have defined a custom juror struct, which packages up important information 

about a juror (their name and their bias, represented as an int)
○ Given a Vector<juror> (their may be duplicate name/bias pairs among candidates), we want 

to print out all possible unbiased juries that can be formed

● Recursive Case
○ Select a candidate that hasn't been considered yet.
○ Try not including them in the jury, and recursively find all possible unbiased juries.
○ Try including them in the jury, and recursively find all possible unbiased juries.

● Base Case
○ Once we're out of candidates to consider, check the bias of the current jury. If 0, display them!



Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
        currentJury.remove(currentJury.size() - 1);

        allCandidates.insert(0, currentCandidate);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0);
}



Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
        currentJury.remove(currentJury.size() - 1);

        allCandidates.insert(0, currentCandidate);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0);
}

Helper function: Extra 
variable to keep track 

of total bias



Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
        currentJury.remove(currentJury.size() - 1);

        allCandidates.insert(0, currentCandidate);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0);
}

Base case: Only display 
juries with no total bias



Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
        currentJury.remove(currentJury.size() - 1);

        allCandidates.insert(0, currentCandidate);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0);
}

Recursive case: Consider 
juries both with and 
without this person



Jury Selection 
Optimization



Jury Selection Code
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currentBias){
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        }
    } else {
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Jury Selection Code
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias);
        currentJury.remove(currentJury.size() - 1);

        allCandidates.insert(0, currentCandidate);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0);
}

Vector addition/removal can 
be an expensive operation. 

Can we do better?



Optimizing Subset Creation

● The core component of subset generation includes visiting each element 
once, and making a decision about whether to include it or not
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Optimizing Subset Creation

● The core component of subset generation includes visiting each element 
once, and making a decision about whether to include it or not

● Previously, we have done so by arbitrarily picking the "first" element in the 
collection as the one under consideration, and then removed it (expensive) 
from the collection for future recursive calls.

● Key Idea: Instead of modifying the collection of elements, let's just keep track 
of our current place in the collection (index of the element that is currently 
under consideration). 



Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias){
    if (allCandidates.isEmpty()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[0];
        allCandidates.remove(0);

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias); 
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void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias, int index){
    if (index == allCandidates.size()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[index];

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1); 
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Jury Selection Code v2.0
void findAllUnbiasedJuriesHelper(Vector<juror>& allCandidates, Vector<juror>& currentJury, int 
currentBias, int index){
    if (index == allCandidates.size()){
        if (currentBias == 0){
            displayJury(currentJury);
        }
    } else {
        juror currentCandidate = allCandidates[index];

        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias, index + 1); 
        currentJury.add(currentCandidate);
        findAllUnbiasedJuriesHelper(allCandidates, currentJury, currentBias + currentCandidate.bias, 
index + 1);
        currentJury.remove(currentJury.size() - 1);
    }
}

void findAllUnbiasedJuries(Vector<juror>& allCandidates){
    Vector<juror> jury;
    findAllUnbiasedJuriesHelper(allCandidates, jury, 0, 0);
}

No more expensive 
addition/removal of 
possible candidates!



Takeaways

● Being able to enumerate all possible subsets and inspect subsets with certain 
constraints can be a powerful problem-solving tool.

● Maintaining an index of the current element under consideration for 
inclusion/exclusion in a collection is the most efficient way to keep track of the 
decision making process for subset generation
○ Hint: This will be important for those of you that attempt the backtracking challenge problem on 

Assignment 3!



Announcements



Announcements

● Assignment 3 was released last Thursday evening and is due on Thursday, 
July 16 at 11:59pm.

● Section leaders are currently working on grading and providing feedback on 
Assignment 2 submissions – feedback will be released by Wednesday night.

● The mid-quarter diagnostic is coming up at the end of this week. 
○ You will have a 72-hour period of time from Friday to Sunday to complete the diagnostic. 
○ The diagnostic is designed to take about an hour and a half to complete, but you can have up 

to 3 hours to work on it if you so choose.
○ The diagnostic will be administered digitally using BlueBook.
○ A practice diagnostic and review materials have been posted on the diagnostic page.

http://web.stanford.edu/class/cs106b/assessments/diagnostic/


Revisiting mazes



Solving mazes with breadth-first search (BFS)

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview


Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze



Solving mazes recursively

● Start at the entrance

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish

Dead end! 
(cannot go North, 

South, East, or West)



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish

We must go back one 
step.



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish

Dead end! 
(cannot go North, 

South, East, or West)



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish

We must go back one 
step.



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish



Solving mazes recursively

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

End of the maze!



Solving mazes recursively

● Base case: If we’re at the end of the maze, stop
● Recursive case: Explore North, South, East, then West

start

finish



What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either 

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location
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● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
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● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location

Exercise for home: 
Draw the decision tree.



Pseudocode

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)
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Pseudocode

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

We need a helper function!
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Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up, 

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or 

not a location has been visited by flipping the cell to false once it’s in the path (to 
avoid loops) → This works with our existing generateValidMoves() function

● Recursive case: Iterate over valid moves from generateValidMoves() and try adding 
them to our path
○ If any recursive call returns true, we have a solution
○ If all fail, return false

● Base case: We can stop exploring when we’ve reached the exit → return true if the 
current location is the exit



Let’s code it!



Recursion is depth-first search 
(DFS)!



BFS vs. DFS comparison Which do you think will be faster?

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview


BFS vs. DFS comparison

● BFS is typically iterative while DFS is naturally expressed recursively.

● Although DFS is faster in this particular case, which search strategy to use 
depends on the problem you’re solving.

● BFS looks at all paths of a particular length before moving on to longer paths, 
so it’s guaranteed to find the shortest path (e.g. word ladder)!

● DFS doesn’t need to store all partial paths along the way, so it has a smaller 
memory footprint than BFS does.



Summary



Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with 

large data structures
○ Explicit unchoose step by "undoing" 

prior modifications to structure
○ E.g. Generating subsets (one set 

passed around by reference to track 
subsets)

● Copy edit explore
○ Pass by value; usually when memory 

constraints aren’t an issue
○ Implicit unchoose step by virtue of 

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions 
(enumeration)

2. Find one solution (or prove 
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose



We’ve seen lots of different backtracking strategies...

Questions to ask yourself when planning your strategy:

● What does my decision tree look like? (decisions, options, what to keep track of)
● What are our base and recursive cases?
● What’s the provided function prototype and requirements?  Do we need a helper 

function?
● Do we care about returning or keeping track of the path we took to get to our solution?
● Which of our three use cases does our problem fall into? (generate/count all solutions, 

find one solution/prove its existence, pick one best solution)
● What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
● What are we building up as our “many possibilities” in order to find our solution? 

(subsets, permutations, or something else)



What’s next?



vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

User/client
Implementation

recursive 
problem-solving

Core 
Tools



Recursive optimization: Find the best solution


