Binary Search Trees

What is your favorite type of tree?
(put your answers the chat - e.g. oak, redwood,
maple, etc.)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we take

Tod ay’S advantage of trees to
guestions

structure and efficiently
manipulate data?

. What is a binary search

Tod ay’s tree (BST)?

tOpICS Building efficient BSTs

Implementing Sets with
BSTs

Review

[trees]

tree
A tree is hierarchical data organization
structure composed of a root value
linked to zero or more non-empty
subtrees.

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

Tree terminology

e Types of nodes

o The node defines the "top" of the tree.

o Every node has O or more nodes descended from it.

o Nodes with no children are called

o Every node in a tree has exactly one node (except for the root node).

e Terminology for quantifying trees

o A between two nodes traverses edges between parents and their children,
and of a path is the number of edges between the two nodes.

o The of a node is the length of the path (# of edges) between the root and
that node.

o The of a tree is the number of nodes in the longest path through the tree
(i.e. the number of in the tree).

Binary trees

o A is a tree where every node has either O, 1, or 2 children. No node
in a binary tree can have more than 2 children.

e Typically, the two children of a node in a binary tree are referred to as the

and the °

Binary trees

o A is a tree where every node has either O, 1, or 2 children. No node
in a binary tree can have more than 2 children.

e Typically, the two children of a node in a binary tree are referred to as the

and the
° struct TreeNode {
string data;
° ° TreeNode* left;
TreeNode* right;
(®) :

What is a tree in C++7?

A tree is either...

An empty tree Cotifoorin
represented by 'NULLPTR
nullptr, or..

"data”
A single TreeNode, =

with O, 1, or 2 Vad A

® @

non-null pointers to
other TreeNodes

Building a tree

e Building a tree is very similar to the process of building a linked list.
e \We create new nodes of the tree by dynamically allocating memory.
e \We start by first creating the leaf nodes and then creating their parents.

e We integrate the parents into the tree by rewiring their 1left and right
pointers to the already-created children.

Traversing a tree - recursively!

Pre-order In-order Post-order

1. Traverse the left subtree 1. Traverse the left subtree
2. Traverse the right

2. Traverse the left subtree subtree
3. Traverse the right 3. Traverse the right
subtree subtree

5D SO O

Try it yourself:
Freeing a treel

The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structvre and efficiently

man f,bu/ate data?

Revisiting our levels of
abstraction...

Abstract Data

- What is the interface for the user? Structures
O — o — e = =
."('_)
© How is our data organized? Data Organization
I (binary heaps, BSTs, Huffman trees) Strategies
O
©
G
O What stores our data? Fundamental C++
w (arrays, linked lists,) Data Storage
Q
G {-
Q e
—
How is data represented electronically?
RAM) Computer
(Hardware

Abstract Data

- What is the interface for the user? Structures
O — o — e = =
."('_)
© How is our data organized? Data Organization
I (binary heaps, , Huffman trees) Strategies
O
©
G
O What stores our data? Fundamental C++
w (arrays, linked lists,) Data Storage
Q
>
Q e
—
How is data represented electronically?
RAM Computer
() Hardware

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o0 .size() - 0O(1) o0 .size() - 0O(1)
o .add() - 0O(1) o .peek () - O(1) o .isEmpty () - O(1)
o wv[i] - 0O(1) O .enqueue() - 0O(1) 0 .add() - O(log(n))
o .insert() - O(n) 0 .dequeue() - 0O0(1) 0 .remove() — O(log(n))
O .remove () — O(n) O .isEmpty () - O(1) 0 .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
0 traversal - O(n)
e Stacks e Maps

e Grids .size() - O(1) .size() - 0(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1) .push() - O(1) m[key] - O(log(n))

ogl[il[j] - O(1) .pop() - O(1) .contains () - O(log(n))
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

© O O O O

traversal - O(n)

o O O O O O

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o0 .size() - 0O(1) o0 .size() - 0O(1)
o .add() - 0O(1) o .peek () - O(1) o .isEmpty () - O(1)
o wv[i] - O(1) O .enqueue() - 0O(1) © .add() - O(log(n))
0 .insert() - O(n) 0 .dequeue() - 0O0(1) 0 .remove() - O(log(n))
o .remove() - O(n) O .isEmpty () - O(1) o .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
0 traversal - O(n)
e Stacks e Maps

e Grids .size() - O(1) .size() - 0(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1) .push() - O(1) m[key] - O(log(n))

.contains () - O(log(n))
traversal - O(n)

ocgl[i]l[3] - O(1) .pop() — O(1)
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

o O O O O O
o |0 O O O

What is the interface for the user? Abstract Data

(, Maps, etc.) Structures
How is our data organized? Data Organization
(binary heaps, , Huffman trees) Strategies

?
What stores our data* Fundamental C++

(arrays, linked lists,) Data Storage

How is data represented electronically? {-
(RAM) Computer

Hardware

Levels of abstraction

What is a binary search tree
(BST)?

struct TreeNode {
string data;

Building Trees Programmatically TreeNode* left;

TreeNode* right;

}
"pineapple”
"coconut" "strawberry"
/ \ :ﬂmﬁml .\\
"banana” "durian” "taro"

NiLlee] NGt Nt Nt e T

A binary search tree is either...

an empty data
structure represented
by nullptr or...

and whose right
subtree is a BST of
larger values than x.

a single node,
whose left subtree is
a BST of smaller
values than Xx...

Building a BST

Pick the median element

N~
IIIIIIIIIIIIIIIIIIIIIIIIIIII @IIIIIIIIIIIIII

2
@

Move elements less Move elements greater
than 108 to this side | than 108 to this side

Move elements less Move elements greater
than 108 to this side | than 108 to this side

R e e e e e

L e e e e e

R e e e e e

L e e e e e

Pick the median element
of the left side

—————————
R e e e e e

>103

———————

<103

1
1
|
|
I
1
|
|
I
I

R e e e e e

5103

———————

<103

e e - - o o -

R e e e e e

e e - - o o -

R e e e e e

Pick the median element

of the right side

e e - - o o -

e e - - o o -

e e - - o o -

1
1
1
1
1
1
1
1
1
1
/
\
1
1
1
1
1
1
1
1
1
1
/
\
1
1
1
1
1
1
1
1
1
1
]
-+
c
()
e
Q o
o O
N c v
=
! o 9
! d)
()
" S
I U
- e
I X
I L
1 (a

e e - - o o -

e e - - o o -

oy

o o

oy

o o

—— o ——

e e - - o o -

—— e o o o

Keep repeating this process

for all the subtrees!

166

106 109 143

There are 13 nodes in the tree, but
the path to each node is short
(~0(log 13))!

166

106 109 143

How could we check if 106 is in this
tree?

106 < 108

166

106 109 143

How could we check if 106 is in this
tree?

106 < 108
106 > 103

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

103

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

103

We found 106 so we’re done!

166

166

106 109 143

How could we check if 170 is in this
tree?

176 > 108

166

106 109 143

How could we check if 170 is in this
tree?

176 > 108
176 > 154

How could we check if 170 is in this
tree?

176 > 108
176 > 154
170 > 166

How could we check if 170 is in this
tree?

176 > 108
176 > 154
170 > 166

Right child is nullptr so we're
done!

Building a BST

e An is built by repeatedly choosing the median element as the root
node of a given subtree and then separating elements into groups less than
and greater than that median.

Building a BST

e An is built by repeatedly choosing the median element as the root
node of a given subtree and then separating elements into groups less than
and greater than that median.

Uhat deeg “o,b timal” mean?

What if we didn’t choose the median?

®

®e

Let’s choose the smallest element instead...

®

®e

Let’s choose the smallest eflement instead...

P

@

Let’s choose the smallest eflement instead...

P

@

Let’'s choose the smallest element instead...
N o6,
e
@

e

Now our longest path is O(n)! @

Takeaways

e There are multiple valid BSTs for the same set of data.

Takeaways

e There are multiple valid BSTs for the same set of data.
o Another example with the previous dataset:

Takeaways

e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree
matters!

Takeaways

e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree
matters!

e A binary search tree is if its height is 0(log n), where n is the number

of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(1log n) runtime.

Takeaways

e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree
matters!

e A binary search tree is if its height is 0(log n), where n is the number

of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(1log n) runtime.
o Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. » take CS161to learn why!

Takeaways

e There are multiple valid BSTs for the same set of data.

e How you construct the tree/the order in which you add the elements to the tree
matters!

e A binary search tree is if its height is 0(log n), where n is the number

of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
o Lookup, insertion, and deletion with balanced BSTs all operate in 0(1log n) runtime.
o Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. » take CS161to learn why!
o A self-balancing BST reshapes itself on insertions and deletions to stay balanced
(how to do this is beyond the scope of this class).

Announcements

Announcements

e Assignment 5 is due on tonight at 11:59pm PDT.

e Assignment 6 will be released by the end of the day tomorrow and will be due
on Wednesday, August 12 at 11:59pm PDT. This is a hard deadline — there is
no grace period and no submissions will be accepted after this time.

e Due to the end of quarter timeline, there will be no revisions on Assignments
5 and 6.

e Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will
have the opportunity to schedule your final presentation time after submitting.

Implementing Sets with BSTs

We’re going to implement a Set using a BST!

e Our Set will only store strings as its data type.

We’re going to implement a Set using a BST!

e Our Set will only store strings as its data type.

struct TreeNode {
std::string data;
TreeNode* left;
TreeNode* right;

// default constructor does not initialize
TreeNode() {}

// 3-arg constructor sets fields from arguments
TreeNode(std::string d, TreeNode* 1, TreeNode* r) {

data = d;
left = 1;
right = r;

}s

We’re going to implement a Set using a BST!

e Our Set will only store strings as its data type

e \We have a header file that will include a public interface already defined.

OurSet Public Interface

class OurSet {

public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

We’re going to implement a Set using a BST!

e Our Set will only store strings as its data type

e \We have a header file that will include a public interface already defined.

e As we write the Set methods, think about how their runtimes would change for

a balanced vs. an unbalanced BST.
o Note: Actual sets are self-balancing, but we won’t go into the details of how to
implement that!

How do we design OurSet?

We must answer the following three questions:

1. Member functions: What public interface should OurSet support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurSet?

3. Constructor: How are the member variables initialized when a new
instance of OurSet is created?

OurSet Public Interface

class OurSet {

public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

Let’s code it!

(constructor, destructor, clear(), etc.)

OurSet Public Interface

class OurSet {

public:
OurSet(); // constructor
~0urSet(); // destructor

bool contains(string value);
void add(string value);

void remove(string value);
void clear();

int size();

bool isEmpty();

void printSetContents();

private:
/* To be defined soon! */

}s

106 < 108
106 > 103
106 < 107

103

We found 106 so we’re done!

Let’s code it!

(contains(), add())

OurSet summary

e Our tree utility functions (inorderPrint, freeTree) showed up as private

member functions/helpers!
o In-order traversal prints our elements in the correctly sorted order!

OurSet summary

e Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/helpers!

o In-order traversal prints our elements in the correctly sorted order!

e Using a BST allowed us to take advantage of recursion to traverse our data
and get an O(log n) runtime for our methods.

OurSet summary

e Our tree utility functions (inorderPrint, freeTree) showed up as private

member functions/helpers!
o In-order traversal prints our elements in the correctly sorted order!

e Using a BST allowed us to take advantage of recursion to traverse our data
and get an O(log n) runtime for our methods.

® Rewiring trees can be complicated!
o Make sure to consider when nodes need to be passed by reference.
o Check out the remove method after class if you're interested in seeing an example
of tree rewiring (you won’t be required to do anything this complex with tree
rewiring).

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
Diagnostic
Life after CS106B/
algorithmic recursive

analysis problem-solving

Abstract Data

- What is the interface for the user? Structures
O — o — e = =
.8
© How is our data organized? Data Organization
I (binary heaps, BSTs,) Strategies
O
©
G
O What stores our data? Fundamental C++
w (arrays, linked lists,) Data Storage
Q
G {-
Q .
—
How is data represented electronically?
RAM) Computer
(Hardware

Huffman coding

