
Binary Search Trees
What is your favorite type of tree?

(put your answers the chat - e.g. oak, redwood,
maple, etc.)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Today’s
questions

How can we take
advantage of trees to
structure and efficiently
manipulate data?

Today’s
topics

1. What is a binary search
tree (BST)?

2. Building efficient BSTs

3. Implementing Sets with
BSTs

Review
[trees]

tree
A tree is hierarchical data organization

structure composed of a root value
linked to zero or more non-empty

subtrees.

Definition

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

x

Tree terminology
● Types of nodes

○ The root node defines the "top" of the tree.
○ Every node has 0 or more children nodes descended from it.
○ Nodes with no children are called leaf nodes.
○ Every node in a tree has exactly one parent node (except for the root node).

● Terminology for quantifying trees
○ A path between two nodes traverses edges between parents and their children,

and length of a path is the number of edges between the two nodes.
○ The depth of a node is the length of the path (# of edges) between the root and

that node.
○ The height of a tree is the number of nodes in the longest path through the tree

(i.e. the number of levels in the tree).

Binary trees

● A binary tree is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

● Typically, the two children of a node in a binary tree are referred to as the left
child and the right child.

A

B C

D

Binary trees

● A binary tree is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

● Typically, the two children of a node in a binary tree are referred to as the left
child and the right child.

A

B C

D

struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

What is a tree in C++?

A tree is either...

An empty tree
represented by
nullptr, or...

A single TreeNode,
with 0, 1, or 2
non-null pointers to
other TreeNodes

PTR

"data"

Building a tree

● Building a tree is very similar to the process of building a linked list.

● We create new nodes of the tree by dynamically allocating memory.

● We start by first creating the leaf nodes and then creating their parents.

● We integrate the parents into the tree by rewiring their left and right
pointers to the already-created children.

Traversing a tree - recursively!

Pre-order

1. "Do something" with
the current node

2. Traverse the left subtree
3. Traverse the right

subtree

In-order

1. Traverse the left subtree
2. "Do something" with

the current node
3. Traverse the right

subtree

1. Traverse the left subtree
2. Traverse the right

subtree
3. "Do something" with

the current node

Post-order

1

2 3

2

1 3

3

1 2

Try it yourself:
Freeing a tree!

Key Idea: The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

Key Idea: The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structure and efficiently
manipulate data?

Revisiting our levels of
abstraction...

Le
ve

ls
 o

f a
bs

tr
ac

tio
n What is the interface for the user?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Le
ve

ls
 o

f a
bs

tr
ac

tio
n What is the interface for the user?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?
(Sets, Maps, etc.)

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

What is a binary search tree
(BST)?

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR

"taro"

PTR PTR

A binary search tree is either...

an empty data
structure represented
by nullptr or...

x

<x >x

a single node,
whose left subtree is
a BST of smaller
values than x…

and whose right
subtree is a BST of
larger values than x.

Building a BST

166
143

41

108
154

161

52

106110
109

51
107 103

166
143

41

108
154

161

52

106110
109

51
107 103

Pick the median element

166
143

41

154

161

52

106110
109

51
107 103

108

166
143

41

154

161

52

106110
109

51
107 103

108

Move elements less
than 108 to this side

Move elements greater
than 108 to this side

166
143

41

154
16152

106
110

109

51

107

103

108

Move elements less
than 108 to this side

Move elements greater
than 108 to this side

166
143

41

154
16152

106
110

109

51

107

103

108

166
143

41

154
16152

106
110

109

51

107

103

108

Pick the median element
of the left side

166
143

41

154
16152

106
110

109

51

107

108

103

<103 >103

166
143

41

154
161

52 106

110

109

51 107

108

103

<103 >103

166
143

41

154
161

52
106

110

109

51

107

108

103

166
143

41

154
161

52
106

110

109

51

107

108

103

Pick the median element
of the right side

166

143

41

161

52
106

110

109

51

107

108

103

<154 >154

154

166143

41
161

52
106

110

10951

107

108

103

<154 >154

154

143

41

52
106

110

10951

107

108

103 154

166

161

143

41

52
106

110

10951

107

108

103 154

166

161

Pick the median element
of the left side

143

41 52

106

110

109

107

108

103 154

166

161

51

143

41 52

106

110

109

107

108

103 154

166

161

51

143

41 52

106

110

109

107

108

103 154

166

161

51

Keep repeating this process
for all the subtrees!

14341 52 106

110

109

107

108

103 154

166

161

51

14341 52 106

110

109

107

108

103 154

166

161

51

There are 13 nodes in the tree, but
the path to each node is short

(~O(log 13))!

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 106 is in this
tree?

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 106 is in this
tree?

106 < 108

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 106 is in this
tree?

106 < 108
106 > 103

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 106 is in this
tree?

106 < 108
106 > 103
106 < 107

14341 52 106

110

109

107

108

103 154

166

161

51

We found 106 so we’re done!

106 < 108
106 > 103
106 < 107

14341 52 106

110

109

107

108

103 154

166

161

51

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 170 is in this
tree?

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 170 is in this
tree?

170 > 108

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 170 is in this
tree?

170 > 108
170 > 154

14341 52 106

110

109

107

108

103 154

166

161

51

How could we check if 170 is in this
tree?

170 > 108
170 > 154
170 > 166

14341 52 106

110

109

107

108

103 154

166

161

51

Right child is nullptr so we’re
done!

170 > 108
170 > 154
170 > 166

Building a BST

● An optimal BST is built by repeatedly choosing the median element as the root
node of a given subtree and then separating elements into groups less than
and greater than that median.

Building a BST

● An optimal BST is built by repeatedly choosing the median element as the root
node of a given subtree and then separating elements into groups less than
and greater than that median.

What does “optimal” mean?

What if we didn’t choose the median?

166
143

41

108
154

161

52

106110
109

51
107 103

Let’s choose the smallest element instead...

166
143

41

108
154

161

52

106110
109

51
107 103

Let’s choose the smallest element instead...

166
143

108
154

161

52

106110
109

51
107 103

41

Let’s choose the smallest element instead...

166
143

108
154

161

52

106110
109

51
107 103

41

Let’s choose the smallest element instead...

166
143

108
154

161

52

106110
109

51

107 103

41

166

143

108

154

161

52

106

110

109

51

107

103

41

166

143

108

154

161

52

106

110

109

51

107

103

41

Now our longest path is O(n)!

Takeaways

● There are multiple valid BSTs for the same set of data.

Takeaways

● There are multiple valid BSTs for the same set of data.
○ Another example with the previous dataset:

166

143

108

154

161
52

106 110

109

51

107

103

41

Takeaways

● There are multiple valid BSTs for the same set of data.

● How you construct the tree/the order in which you add the elements to the tree
matters!

Takeaways

● There are multiple valid BSTs for the same set of data.

● How you construct the tree/the order in which you add the elements to the tree
matters!

● A binary search tree is balanced if its height is O(log n), where n is the number
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
○ Lookup, insertion, and deletion with balanced BSTs all operate in O(log n) runtime.

Takeaways

● There are multiple valid BSTs for the same set of data.

● How you construct the tree/the order in which you add the elements to the tree
matters!

● A binary search tree is balanced if its height is O(log n), where n is the number
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
○ Lookup, insertion, and deletion with balanced BSTs all operate in O(log n) runtime.
○ Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. → take CS161 to learn why!

Takeaways

● There are multiple valid BSTs for the same set of data.

● How you construct the tree/the order in which you add the elements to the tree
matters!

● A binary search tree is balanced if its height is O(log n), where n is the number
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
○ Lookup, insertion, and deletion with balanced BSTs all operate in O(log n) runtime.
○ Theorem: If you start with an empty tree and add in random values, then with high

probability the tree is balanced. → take CS161 to learn why!
○ A self-balancing BST reshapes itself on insertions and deletions to stay balanced

(how to do this is beyond the scope of this class).

Announcements

Announcements

● Assignment 5 is due on tonight at 11:59pm PDT.

● Assignment 6 will be released by the end of the day tomorrow and will be due
on Wednesday, August 12 at 11:59pm PDT. This is a hard deadline – there is
no grace period and no submissions will be accepted after this time.

● Due to the end of quarter timeline, there will be no revisions on Assignments
5 and 6.

● Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will
have the opportunity to schedule your final presentation time after submitting.

Implementing Sets with BSTs

We’re going to implement a Set using a BST!

● Our Set will only store strings as its data type.

We’re going to implement a Set using a BST!

● Our Set will only store strings as its data type.

struct TreeNode {
 std::string data;
 TreeNode* left;
 TreeNode* right;

 // default constructor does not initialize
 TreeNode() {}
 // 3-arg constructor sets fields from arguments
 TreeNode(std::string d, TreeNode* l, TreeNode* r) {
 data = d;
 left = l;
 right = r;
 }
};

We’re going to implement a Set using a BST!

● Our Set will only store strings as its data type

● We have a header file that will include a public interface already defined.

OurSet Public Interface
class OurSet {
public:
 OurSet(); // constructor
 ~OurSet(); // destructor

 bool contains(string value);

 void add(string value);

 void remove(string value);

 void clear();

 int size();

 bool isEmpty();

 void printSetContents();

private:
 /* To be defined soon! */
};

We’re going to implement a Set using a BST!

● Our Set will only store strings as its data type

● We have a header file that will include a public interface already defined.

● As we write the Set methods, think about how their runtimes would change for
a balanced vs. an unbalanced BST.
○ Note: Actual sets are self-balancing, but we won’t go into the details of how to

implement that!

How do we design OurSet?
We must answer the following three questions:

1. Member functions: What public interface should OurSet support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurSet?

3. Constructor: How are the member variables initialized when a new
instance of OurSet is created?

OurSet Public Interface
class OurSet {
public:
 OurSet(); // constructor
 ~OurSet(); // destructor

 bool contains(string value);

 void add(string value);

 void remove(string value);

 void clear();

 int size();

 bool isEmpty();

 void printSetContents();

private:
 /* To be defined soon! */
};

Let’s code it!
(constructor, destructor, clear(), etc.)

OurSet Public Interface
class OurSet {
public:
 OurSet(); // constructor
 ~OurSet(); // destructor

 bool contains(string value);

 void add(string value);

 void remove(string value);

 void clear();

 int size();

 bool isEmpty();

 void printSetContents();

private:
 /* To be defined soon! */
};

14341 52 106

110

109

107

108

103 154

166

161

51

We found 106 so we’re done!

106 < 108
106 > 103
106 < 107

Let’s code it!
(contains(), add())

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/helpers!
○ In-order traversal prints our elements in the correctly sorted order!

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/helpers!
○ In-order traversal prints our elements in the correctly sorted order!

● Using a BST allowed us to take advantage of recursion to traverse our data
and get an O(log n) runtime for our methods.

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/helpers!
○ In-order traversal prints our elements in the correctly sorted order!

● Using a BST allowed us to take advantage of recursion to traverse our data
and get an O(log n) runtime for our methods.

● Rewiring trees can be complicated!
○ Make sure to consider when nodes need to be passed by reference.
○ Check out the remove method after class if you’re interested in seeing an example

of tree rewiring (you won’t be required to do anything this complex with tree
rewiring).

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

real-world
algorithms

Le
ve

ls
 o

f a
bs

tr
ac

tio
n What is the interface for the user?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Huffman coding

