
Console Programs, Vectors,
and Grids

What is the first thing that comes to your mind
when you think of the phrase "data structure"?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Today’s
questions

How do we build programs that
interact with users?

How do we structure data using
abstractions in code?

Today’s
topics

1. Review (strings, testing, and
SimpleTest)

2. Console Programs
3. Abstract Data Types

a. Vectors
b. Grids (time permitting)

4. Pass by reference

Review
(strings, testing and SimpleTest)

SimpleTest

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

NO_TESTS
SELECTED_TESTS
ALL_TESTS

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How do we solve
interesting problems
with strings?

Real-life problems involving strings

● Encryption and decryption

string encrypted = ‘Jvkpun pz mbu’;

string decrypted = ‘Coding is fun’;

Bonus: What cipher is this?

Slide courtesy of Chris Piech

Real-life problems involving strings

Slide courtesy of Chris Piech

● Encryption and decryption

● Language translation

string input = "¿Dónde está la

biblioteca?";

string output = "Where is the

library?";

Real-life problems involving strings

● Encryption and decryption

● Language translation

● DNA Analysis

string input = "ATGCCGATGTGC";

output = gene analysis,

homology score, etc.

Slide courtesy of Chris Piech

Real-life problems involving strings

● Encryption and decryption

● Language translation

● DNA Analysis

string input = "ATGCCGATGTGC";

output = gene analysis,

homology score, etc.

Slide courtesy of Chris Piech

Generating DNA Complement Sequences

● In biology, you might have learned that
the fundamental unit of DNA is a
nucleotide, or base.

● The four possible bases for DNA are
Guanine (G), Cytosine (C), Adenine (A),
and Thymine (T).

● These nucleotides form “base pairs” that
make up complementary strands of DNA
(which create its double-helix structure).

● A pairs with T, and G pairs with C.

Generating DNA Complement Sequences

We want to write a function with the prototype

string complement (string dnaStrand)

which takes in a strand of DNA as a string and returns its complement as a string.

Generating DNA Complement Sequences

We want to write a function with the prototype

string complement (string dnaStrand)

which takes in a strand of DNA as a string and returns its complement as a string.

The function’s output should be case-insensitive; that is, complement("ATG")
and complement("aTg") should return the same result => "TAC". All output
should be in uppercase.

Generating DNA Complement Sequences

We want to write a function with the prototype

string complement (string dnaStrand)

which takes in a strand of DNA as a string and returns its complement as a string.

The function’s output should be case-insensitive; that is, complement("ATG")
and complement("aTg") should return the same result => "TAC". All output
should be in uppercase.

The function can assume that all of the base pairs of the input string are valid DNA
base pairs– that is, the string consists only of the following characters: ‘a’, ‘A’,
‘g’, ‘G’, ‘t’, ‘T’, ‘c’, ‘C’

Your Task (instructions.txt)

● We've provided a buggy implementation of complement for you in the public
Ed workspaces. We've also provided some tests, but all of the tests currently
pass, so they haven't yet unearthed the bug in the code.

● You and your breakout room group members have three tasks:
○ Write at least one additional test that uncovers the bug in the provided

implementation.
○ Fix the bug and confirm that your new test passes.
○ Make sure to add a more accurate name to the STUDENT_TEST identifier in the

code. Discuss with your group what other tests/groups of tests you might add if you
had more time to make the code more robust.

Breakout rooms! (5
minutes)
(Ed workspace)

https://us.edstem.org/courses/640/workspaces/pX3VHXciZEHgOf4DXMlaRkqombv1k6Jh

DNA Exercise Recap

● What sort of test cases were not being covered?
○ Inputs with lowercase letters!
○ Example of a test that you could have added to surface an error

■ STUDENT_TEST ("DNA strand with lowercase letter") {
 EXPECT_EQUAL(complement("aTg"), "TAC");
}

DNA Exercise Recap

● What sort of test cases were not being covered?
○ Inputs with lowercase letters!
○ Example of a test that you could have added to surface an error

■ STUDENT_TEST ("DNA strand with lowercase letter") {
 EXPECT_EQUAL(complement("aTg"), "TAC");
}

● How do you fix the bug?
○ Need to do conversion of the characters in the string to lowercase!
○ Could add ch = toupper(ch) as the first line inside the for loop
○ Could convert the whole string to uppercase before starting the loop
○ Less optimal: check all 8 cases with if statements (for upper and lower case bases)

DNA Exercise Recap

● What sort of test cases were not being covered?
○ Inputs with lowercase letters!
○ Example of a test that you could have added to surface an error

■ STUDENT_TEST ("DNA strand with lowercase letter") {
 EXPECT_EQUAL(complement("aTg"), "TAC");
}

● How do you fix the bug?
○ Need to do conversion of the characters in the string to uppercase!
○ Could add ch = toupper(ch) as the first line inside the for loop
○ Could convert the whole string to uppercase before starting the loop
○ Less optimal: check all 8 cases with if statements (for upper and lower case bases)

Style tip: Minimize the number of
hardcoded checks/conditional statements!

How do we build programs
that interact with users?

How do we build programs
that interact with users?

Console programs!

Console program
A program that uses the interactive terminal
(console) as a communication boundary with

the user.

Definition

Console program
A program that uses the interactive terminal
(console) as a communication boundary with

the user.

Definition

An abstraction
for the user!

Some example console programs

Some example console programs

Some example console programs

How do we get
information from the
user?

How do we get
information from the
user?

The interactive terminal (console)
and the getLine() function!

The console and the getLine()function

The console and the getLine()function

● The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

The console and the getLine()function

● The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

● The getLine() function takes in a single parameter, which is a prompt to
show to the user.

The console and the getLine()function

● The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

● The getLine() function takes in a single parameter, which is a prompt to
show to the user.

● The function will then wait while the user types in text into the console.

The console and the getLine()function

● The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

● The getLine() function takes in a single parameter, which is a prompt to
show to the user.

● The function will then wait while the user types in text into the console.

● After the user submits their answer by hitting the “Enter/Return” key, the
function returns the value that the user typed into the console.

Console Programs
Demo

Console program summary

● Use getLine(prompt) to read in information from the user.
○ Make sure to convert the data to the correct type
○ You can also use functions from simpio.h to get data of other types

https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Console program summary

● Use getLine(prompt) to read in information from the user.
○ Make sure to convert the data to the correct type
○ You can also use functions from simpio.h to get data of other types

● Use a while loop to enable multiple runs of your program.
○ while(true) paired with break is a powerful construct

https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Console program summary

● Use getLine(prompt) to read in information from the user.
○ Make sure to convert the data to the correct type
○ You can also use functions from simpio.h to get data of other types

● Use a while loop to enable multiple runs of your program.
○ while(true) paired with break is a powerful construct

● Console programs must be run directly from main()
○ Doesn't make sense to write tests using SimpleTest because they

don't have neatly defined "output" to compare against

https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Announcements

Announcements

● Sections started yesterday and are continuing for the rest of the week! Check
cs198.stanford.edu to see your time.
○ Section attendance and engaged participation are a part of your grade, so make sure to attend!

● Assignment 1 is out and is due next Tuesday at 11:59pm in your local timezone.
○ The YEAH session recording from last night is posted on Canvas under the "Course Videos" tab

(different from where lectures are).

● Ed workspace notes
○ If you had technical difficulties during yesterday's example, check out the last 5 minutes of the

lecture recording for a summary of the activity.
○ For now, you cannot fork public workspaces, but you can download the contents for later use.

● C++ survey results
○ We'll be making a post tomorrow on Ed addressing common questions that came up in the C++

survey. Keep an eye out for that so that you can get your questions answered!

http://cs198.stanford.edu

How do we structure data using
abstractions in code?

Abstract Data Types

Abstract Data Types

● Data structures, or abstract data types (ADTs), are powerful abstractions that
allow programmers to store data in structured, organized ways

Abstract Data Types

● Data structures, or abstract data types (ADTs), are powerful abstractions that
allow programmers to store data in structured, organized ways

● These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

Abstract Data Types

● Data structures, or abstract data types (ADTs), are powerful abstractions that
allow programmers to store data in structured, organized ways

● These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

An abstraction for
the programmer!

Abstract Data Types

● Data structures, or abstract data types (ADTs), are powerful abstractions that
allow programmers to store data in structured, organized ways

● These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

● While we specifically study implementations of ADTs from the Stanford C++
libraries, these principles transcend language boundaries

Abstract Data Types

● Data structures, or abstract data types (ADTs), are powerful abstractions that
allow programmers to store data in structured, organized ways

● These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

● While we specifically study implementations of ADTs from the Stanford C++
libraries, these principles transcend language boundaries
○ We will do our best to point out comparisons to Java and Python along the way.
○ We will not be learning how to use the standard C++ (STL) data structures. If you're interested in

learning more about these, check out the CS106L course materials.

http://web.stanford.edu/class/cs106l/

Vectors

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index
○ All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index
○ All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.
○ Vectors are flexible when it comes to the number of elements they can store. You can easily

add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index
○ All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.
○ Vectors are flexible when it comes to the number of elements they can store. You can easily

add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

● Analogs in other languages: list in Python and ArrayList in Java

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index
○ All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.
○ Vectors are flexible when it comes to the number of elements they can store. You can easily

add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

● Analogs in other languages: list in Python and ArrayList in Java
● Defined in the "vector.h" header file of the Stanford C++ libraries

What is a vector?

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.
○ Each element in the collection has a specific location, or index
○ All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.
○ Vectors are flexible when it comes to the number of elements they can store. You can easily

add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

● Analogs in other languages: list in Python and ArrayList in Java
● Defined in the "vector.h" header file of the Stanford C++ libraries

A collection of function prototypes that
allows for code sharing and reuse.

Basic Vector Operations: Creation

Basic Vector Operations: Creation

Vector<int> vec;

Basic Vector Operations: Creation

Vector<int> vec;

vec

V
ec

to
r<

in
t>

value:

index:

Basic Vector Operations: Creation

Vector<int> vec;

Must specify the
type of values
that will be held
at creation time.

vec

V
ec

to
r<

in
t>

value:

index:

Basic Vector Operations: Creation

Vector<int> vec;

Default state of
initialization is
empty

vec

V
ec

to
r<

in
t>

value:

index:

Basic Vector Operations: Adding Elements

Vector<int> vec;

vec.add(4);

vec

V
ec

to
r<

in
t>

value:

index:

Basic Vector Operations: Adding Elements

Vector<int> vec;

vec.add(4);

vec

V
ec

to
r<

in
t>

value: 4

index: 0

Basic Vector Operations: Adding Elements

Vector<int> vec;

vec.add(4);

vec

V
ec

to
r<

in
t>

value: 4

index: 0

Note: indexing
starts at 0

Basic Vector Operations: Adding Elements

Vector<int> vec;

vec.add(4);

vec.add(8);

vec

V
ec

to
r<

in
t>

value: 4 8

index: 0 1

Basic Vector Operations: Adding Elements

Vector<int> vec;

vec.add(4);

vec.add(8);

vec.add(15);

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Creating + Adding Together

Vector<int> vec = {4, 8, 15};

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[3] << endl;

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[3] << endl;

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2Poll: What will be the
output of the above
code snippet?

Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[3] << endl;

// this will throw an error!

// takeaway: Vector does
bounds checking and will not
allow you to access elements
that are out of bounds vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec.remove(0);

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec.remove(0);

vec

V
ec

to
r<

in
t>

value: 8 15

index: 0 1

Specify the index
to remove at

vec

V
ec

to
r<

in
t>

value: 4 8 15

index: 0 1 2

Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec.remove(0);

vec

V
ec

to
r<

in
t>

value: 8 15

index: 0 1

Basic Vector Operations: Number of Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec.remove(0);

cout << vec.size() << endl;

vec

V
ec

to
r<

in
t>

value: 8 15

index: 0 1

Basic Vector Operations: Number of Elements

Vector<int> vec = {4, 8, 15};

cout << vec[1] << endl;

vec.remove(0);

cout << vec.size() << endl;

vec

V
ec

to
r<

in
t>

value: 8 15

index: 0 1

Output:
2

Traversing a Vector

● Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};
for (int i = 0; i < vec.size(); i++) {
 cout << vec[i] << endl;
}

Traversing a Vector

● Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};
for (int i = 0; i < vec.size(); i++) {
 cout << vec[i] << endl;
}

Output:
1
0
6

Traversing a Vector

● Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};
for (int i = 0; i < vec.size(); i++) {
 cout << vec[i] << endl;
}

● Method 2: for-each loop
Vector<int> vec = {1, 0, 6};
for (int num: vec) {
 cout << num << endl;
}

Output:
1
0
6

Vector Functions

#include "vector.h"

● The following functions are part of the Vector collection, and can be useful:
○ vec.size(): Returns the number of elements in the vector.
○ vec.isEmpty(): Returns true if the vector is empty, false otherwise.
○ vec[i]: Selects the ith element of the vector.
○ vec.add(value): Adds a new element to the end of the vector.
○ vec.insert(index, value): Inserts the value before the specified index, and moves the

values after it up by one index.
○ vec.remove(index): Removes the element at the specified index, and moves the rest of the

elements down by one index.
○ vec.clear(): Removes all elements from the vector.
○ vec.sort(): Sorts the elements in the list in increasing order.

● For the exhaustive list, check out the Stanford Vector class documentation

https://web.stanford.edu/dept/cs_edu/cppdoc/Vector-class.html

Vector Functions

#include "vector.h"

● The following functions are part of the Vector collection, and can be useful:
○ vec.size(): Returns the number of elements in the vector.
○ vec.isEmpty(): Returns true if the vector is empty, false otherwise.
○ vec[i]: Selects the ith element of the vector.
○ vec.add(value): Adds a new element to the end of the vector.
○ vec.insert(index, value): Inserts the value before the specified index, and moves the

values after it up by one index.
○ vec.remove(index): Removes the element at the specified index, and moves the rest of the

elements down by one index.
○ vec.clear(): Removes all elements from the vector.
○ vec.sort(): Sorts the elements in the list in increasing order.

● For the exhaustive list, check out the Stanford Vector class documentation

https://web.stanford.edu/dept/cs_edu/cppdoc/Vector-class.html

A vector example
[demo + poll]

Eliminating Negativity

● Consider the following task: Given a
Vector of integers, write a function
that eliminates negativity from the
vector by changing the sign of all
negative values to turn them into
their positive equivalents

Eliminating Negativity

● Consider the following task: Given a
Vector of integers, write a function
that eliminates negativity from the
vector by changing the sign of all
negative values to turn them into
their positive equivalents

● Poll: What is the output of the code
snippet?

void eliminateNegativity(Vector<int> v){
 for (int i = 0; i < v.size(); i++){
 if (v[i] < 0){
 v[i] = -1 * v[i];
 }
 }
}

int main(){
 Vector<int> nums = {1, -4, 18, -11};
 eliminateNegativity(nums);
 cout << nums << endl;
}

Eliminating Negativity

● Consider the following task: Given a
Vector of integers, write a function
that eliminates negativity from the
vector by changing the sign of all
negative values to turn them into
their positive equivalents

● Result: The vector is passed by
value, so a copy is modified, and no
changes persist.

void eliminateNegativity(Vector<int> v){
 for (int i = 0; i < v.size(); i++){
 if (v[i] < 0){
 v[i] = -1 * v[i];
 }
 }
}

int main(){
 Vector<int> nums = {1, -4, 18, -11};
 eliminateNegativity(nums);
 cout << nums << endl;
}

Eliminating Negativity

● Consider the following task: Given a
Vector of integers, write a function
that eliminates negativity from the
vector by changing the sign of all
negative values to turn them into
their positive equivalents

● Result: The vector is passed by
value, so a copy is modified, and no
changes persist.

void eliminateNegativity(Vector<int> v){
 for (int i = 0; i < v.size(); i++){
 if (v[i] < 0){
 v[i] = -1 * v[i];
 }
 }
}

int main(){
 Vector<int> nums = {1, -4, 18, -11};
 eliminateNegativity(nums);
 cout << nums << endl;
}

So how do we allow
functions to modify
vectors?

Pass by reference
(i.e. How do we efficiently and effectively handle data
structures in functions?)

pass by value
When a parameter is passed into a function,
the new variable stores a copy of the passed

in value in memory

Definition

pass by reference
When a parameter is passed into a function,
the new variable stores a reference to the

passed in value, which allows you to directly
edit the original value

Definition

What exactly is a reference?

● Regular variables look like this:

We will think of a
variable as a
named container
storing a value.

weight

1.06

do
ub

le

What exactly is a reference?

● References look like this:

We will think of a
reference as a box
that just refers to
an existing
variable.

weight

1.06

do
ub

le

What exactly is a reference?

● References look like this:

References have
names and types,
just like regular
variables.

weight

1.06

do
ub

le

weight_ref

double&

What exactly is a reference?

● References look like this:

References have
names and types,
just like regular
variables.

weight

1.06

do
ub

le

weight_ref

double&
The type has an ampersand
(&) after it to indicate it’s a
reference to that data type
rather than the type itself.

What exactly is a reference?

● References look like this:

Here’s what this would look
like in code:

void tripleWeight(double& weight_ref) {
 weight_ref *= 3; // triple the weight
}

int main() {
 double weight = 1.06;
 tripleWeight(weight);
 cout << weight << endl; //prints 3.18
}

weight

1.06

do
ub

le

weight_ref

double&

What exactly is a reference?

● References look like this:

Here’s what this would look
like in code:

void tripleWeight(double& weight_ref) {
 weight_ref *= 3; // triple the weight
}

int main() {
 double weight = 1.06;
 tripleWeight(weight);
 cout << weight << endl; //prints 3.18
}

weight

3.18

do
ub

le

weight_ref

double&

What exactly is a reference?

● References look like this:

Here’s what this would look
like in code:

weight

3.18

do
ub

le

weight_ref

double&

void tripleWeight(double& weight_ref) {
 weight_ref *= 3; // triple the weight
}

int main() {
 double weight = 1.06;
 tripleWeight(weight);
 cout << weight << endl; //prints 3.18
}

But we don’t usually write code
this way...

When we use references

● To allow helper functions to edit data structures in other functions

When we use references

● To allow helper functions to edit data structures in other functions
○ But why don’t we just return a copy of the data structure?

When we use references

● To allow helper functions to edit data structures in other functions
○ But why don’t we just return a copy of the data structure?

● To avoid making new copies of large data structures in memory
○ Passing data structures by reference makes your code more efficient!

When we use references

● To allow helper functions to edit data structures in other functions
○ But why don’t we just return a copy of the data structure?

● To avoid making new copies of large data structures in memory
○ Passing data structures by reference makes your code more efficient!

● References also provide a workaround for multiple return values
○ Your function can both have a return value and also directly edit a Vector object passed in as a

parameter. This makes it as if your function is returning both the vector and the actual return
value!

When we use references

● To allow helper functions to edit data structures in other functions
○ But why don’t we just return a copy of the data structure?

● To avoid making new copies of large data structures in memory
○ Passing data structures by reference makes your code more efficient!

● References also provide a workaround for multiple return values
○ Your function can take in multiple pieces of information by reference and modify them all. In this

way you can "return" both a modified Vector and some auxiliary piece of information about how
the structure was modified. This makes it as if your function is returning two updated pieces of
information to the function that called it!

Revisiting
eliminateNegativity
[demo]

When we don’t use references

● If we always used references, functions would all be able to edit one another’s
variables, and scoping would get confusing!
○ This would also make bugs much more likely. Unexpected and unintended changes to variables

could persist across functions.

When we don’t use references

● If we always used references, functions would all be able to edit one another’s
variables, and scoping would get confusing!
○ This would also make bugs much more likely. Unexpected and unintended changes to variables

could persist across functions.

● When the data itself is small (i.e. the cost of copying by value is low), then we
don’t need to use a reference.

When we don’t use references

● If we always used references, functions would all be able to edit one another’s
variables, and scoping would get confusing!
○ This would also make bugs much more likely. Unexpected and unintended changes to variables

could persist across functions.

● When the data itself is small (i.e. the cost of copying by value is low), then we
don’t need to use a reference.

● Note: You can't provide a literal as an argument if you are passing a parameter
by reference.

void tripleWeight(double& weight_ref);
...
tripleWeight(1.06);

Don’t do this!
Compiler error!

When we don’t use references

● If we always used references, functions would all be able to edit one another’s
variables, and scoping would get confusing!
○ This would also make bugs much more likely. Unexpected and unintended changes to variables

could persist across functions.

● When the data itself is small (i.e. the cost of copying by value is low), then we
don’t need to use a reference.

● Note: You can't provide a literal as an argument if you are passing a parameter
by reference.

What’s next?

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Stacks and Queues

