Console Programs, Vectors,
and Grids

What is the first thing that comes to your mind
when you think of the phrase "data structure"?
(put your answers the chat)




Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



TOd ay’s How do we build programs that
questions

interact with users?

How do we structure data using
abstractions in code?




Today'’s
topics

Review (strings, testing, and
SimpleTest)

Console Programs
Abstract Data Types

a. Vectors
b. Grids (time permitting)

Pass by reference




Review

(strings, testing and SimpleTest)



SimpleTest



How does SimpleTest work?

main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
if (runSimpleTests( )) {

return 0;
) \

return 0;




How does SimpleTest work?

main.cpp testing-examples.cpp
#include "testing/SimpleTest.h" #include "testing/SimpleTest.h"

#include "testing-examples.h"

int factorial (int num);
int main()

{ int factorial (int num) {
if (runSimpleTests(SELECTED_TESTS)) { /* Implementation here */
return 0; }
}
("Some provided tests.") {
return 0; EXPECT_EQUAL (factorial(1l), 1);
} EXPECT_EQUAL (factorial(2), 2);

EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

("student wrote this test") {
// student tests go here!

}



How does SimpleTest work?

main.cpp testing-examples.cpp
#include "testing/SimpleTest.h" #include "testing/SimpleTest.h"

#include "testing-examples.h"

int factorial (int num);
int main()

{ int factorial (int num) {
if (runSimpleTests(SELECTED_TESTS)) { /* Implementation here */
return 0; }
}
PROVIDED_TEST("Some provided tests.") {
return 0; (factorial(1l), 1);
} (factorial(2), 2);

(factorial(3), 6);
(factorial(4), 24);
}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}



How do we solve
interesting problems
with strings?



Real-life problems involving strings

§'a

e Encryption and decryption " BRI

e ——— -

string encrypted = ‘Jvkpun pz mbu’;

string decrypted = ‘Coding is fun’;

Bonus: What cipher is this?

Slide courtesy of Chris Piech



Real-life problems involving strings

e Encryption and decryption
The spirit is willing but the flesh is weak.

e Language translation |
(Russian)
string input = ";Dénde esta la ‘
biblioteca?"; The vodka is good but the meat is rotten.

string output = "Where is the

library?";
*This result cost billions of dollars (adjusted for inflation)

Slide courtesy of Chris Piech




Real-life problems involving strings
e Encryption and decryption
e |anguage translation

e DNA Analysis

string input = "ATGCCGATGTGC";

output = gene analysis,

23andMe

homology score, etc.

Slide courtesy of Chris Piech



Real-life problems involving strings
e Encryption and decryption

e |anguage translation

string input = "ATGCCGATGTGC";

output = gene analysis,

23andMe

homology score, etc.

Slide courtesy of Chris Piech



Generating DNA Complement Sequences

e [n biology, you might have learned that
the fundamental unit of DNA is a
nucleotide, or base.

e The four possible bases for DNA are
Guanine (G), Cytosine (C), Adenine (A),
and Thymine (T).

e These nucleotides form “base pairs” that
make up complementary strands of DNA
(which create its double-helix structure).

e A pairs with T, and G pairs with C.




Generating DNA Complement Sequences

We want to write a function with the prototype

string complement (string dnaStrand)

which takes in a strand of DNA as a string and returns its complement as a string.




Generating DNA Complement Sequences

We want to write a function with the prototype
string complement (string dnaStrand)
which takes in a strand of DNA as a string and returns its complement as a string.

The function’s output should be ; that is, complement ("ATG")
and complement ("aTg") should return the same result => "TAC". All output
should be in uppercase.



Generating DNA Complement Sequences

We want to write a function with the prototype
string complement (string dnaStrand)
which takes in a strand of DNA as a string and returns its complement as a string.

The function’s output should be ; that is, complement ("ATG")
and complement ("aTg") should return the same result => "TAC". All output
should be in uppercase.

The function can assume that all of the base pairs of the input string are valid DNA
base pairs— that is, the string consists only of the following characters: *ta’, ‘A’,
\gl , \GI , \tl , \IIII , \cl , \CI



Your Task (instructions. txt)

e We've provided a buggy implementation of complement for you in the public
Ed workspaces. We've also provided some tests, but all of the tests currently
pass, so they haven't yet unearthed the bug in the code.

[

You and your breakout room group members have three tasks:

o  Write at least one additional test that uncovers the bug in the provided

implementation.
Fix the bug and confirm that your new test passes.
Make sure to add a more accurate name to the STUDENT_TEST identifier in the

code. Discuss with your group what other tests/groups of tests you might add if you
had more time to make the code more robust.



Breakout rooms! (5
minutes)


https://us.edstem.org/courses/640/workspaces/pX3VHXciZEHgOf4DXMlaRkqombv1k6Jh

DNA Exercise Recap

e What sort of test cases were not being covered?
o Inputs with lowercase letters!
o  Example of a test that you could have added to surface an error
m STUDENT TEST ("DNA strand with lowercase letter") ({
EXPECT_ EQUAL (complement ("aTg"), "TAC");




DNA Exercise Recap

e What sort of test cases were not being covered?

o Inputs with lowercase letters!

o  Example of a test that you could have added to surface an error

m STUDENT TEST ("DNA strand with lowercase letter") ({
EXPECT_ EQUAL (complement ("aTg"), "TAC");
}

e How do you fix the bug?
Need to do conversion of the characters in the string to lowercase!
Could add ch = toupper (ch) as the first line inside the for loop
Could convert the whole string to uppercase before starting the loop
Less optimal: check all 8 cases with if statements (for upper and lower case bases)

O O O O



DNA Exercise Recap

e What sort of test cases were not being covered?

o Inputs with lowercase letters!

o  Example of a test that you could have added to surface an error

m STUDENT TEST ("DNA strand with lowercase letter") ({
EXPECT_ EQUAL (complement ("aTg"), "TAC");
}

e How do you fix the bug?
Need to do conversion of the characters in the string to uppercase!
Could add ch = toupper (ch) as the first line inside the for loop
Could convert the whole string to uppercase before starting the loop
Less optimal: check all 8 cases with if statements (for upper and lower case bases)

k g tyle tip: Minimize the nvmber of
hardeoded checks/conditional ctatemente!

O O O O



How do we build programs
that interact with users?



How do we build programs
that interact with users?

Console /broymmc./



Console program
A program that uses the interactive terminal
(console) as a communication boundary with
the user.




An abetraction
for the vser!

Console program
A program that uses the interactive terminal
(console) as a communication boundary with
the user.




Some example console programs

o0 Console [completed]

$ B R

o

HHENWbB UMD ®W
-

Hh
(s
o

Hh




Some example console programs

Console [completed]

Ee [ 8 ¢

1
9
8
7
6
EX
4
3
2
1
L

iftoff!

[ W Console [completed]
¢ o B R ¢ iEo® B ® ¢

This program greets users with a personalized message.
Please enter your name:

Please enter your favorite food:

Hello Nick, it's so nice to meet you!

Would you like some Oreos to eat?




Some example console pro

® Console [completed]

¢ B R .

(=]

1
9
8
9
6
EX
4
3
2
1

Liftoff!

4

grams

Ep | 8 ¢

This program prints squares

Please enter the

number you

The square of 1 is 1.

Please enter the

number you

The square of 3 is 9.

Please enter the

number you

The square of 9 is 81.

Please enter the
The square of 84
Please enter the
The square of -1
Please enter the

number you
is 7056.
number you
is 15
number you

Done squaring numbers!

o ® Console [completed]

¢ b B B .

B B

® @

This program greets users with a personalized message.

Please enter your name:

Please enter your favorite food:
Hello Nick, it's so nice to meet
Would you like some Oreos to eat?

you!

Console [completed]

B ]

squared
squared
squared
squared
squared

squared

e @

(ENTER/RETURN
(ENTER/RETURN
(ENTER/RETURN
(ENTER/RETURN
(ENTER/RETURN

(ENTER/RETURN




How do we get
information from the
user?



How do we get
information from the
user?

The interactive terminal (console)
and the getLine () fanct:'on./



The console and the getLine () function




The console and the getLine () function

e The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.




The console and the getLine () function

e The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

e The getLine () function takes in a single parameter, which is a prompt to
show to the user.




The console and the getLine () function

e The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

e The getLine () function takes in a single parameter, which is a prompt to
show to the user.

e The function will then wait while the user types in text into the console.



The console and the getLine () function

e The console is the text-output area that we have already seen when using
cout to display information. In addition to displaying text, the console can also
solicit text from a user.

e The getLine () function takes in a single parameter, which is a prompt to
show to the user.

e The function will then wait while the user types in text into the console.

e After the user submits their answer by hitting the “Enter/Return” key, the
function returns the value that the user typed into the console.



Console Programs
Demo



Console program summary

e Use getLine (prompt) to read in information from the user.

o Make sure to convert the data to the correct type
o You can also use functions from to get data of other types



https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Console program summary

e Use getLine (prompt) to read in information from the user.
o Make sure to convert the data to the correct type
o You can also use functions from to get data of other types

e Use awhile loop to enable multiple runs of your program.
o while (true) paired with break is a powerful construct



https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Console program summary

e Use getLine (prompt) to read in information from the user.
o Make sure to convert the data to the correct type
o You can also use functions from to get data of other types

e Use awhile loop to enable multiple runs of your program.
o while (true) paired with break is a powerful construct

e Console programs must be run directly from main ()
o Doesn't make sense to write tests using SimpleTest because they
don't have neatly defined "output" to compare against


https://web.stanford.edu/dept/cs_edu/cppdoc/simpio.html

Announcements



Announcements

e Sections started yesterday and are continuing for the rest of the week! Check

to see your time.
o Section attendance and engaged participation are a part of your grade, so make sure to attend!

e Assignment 1is out and is due next Tuesday at 11:59pm in your local timezone.
o The YEAH session recording from last night is posted on Canvas under the "Course Videos" tab
(different from where lectures are).
e Ed workspace notes
o If you had technical difficulties during yesterday's example, check out the last 5 minutes of the
lecture recording for a summary of the activity.
o For now, you cannot fork public workspaces, but you can download the contents for later use.
e C++ survey results
o  We'll be making a post tomorrow on Ed addressing common questions that came up in the C++
survey. Keep an eye out for that so that you can get your questions answered!


http://cs198.stanford.edu

How do we structure data using
abstractions in code?



Abstract Data Types




Abstract Data Types

e Data structures, or , are powerful abstractions that
allow programmers to store data in structured, organized ways




Abstract Data Types

e Data structures, or , are powerful abstractions that
allow programmers to store data in structured, organized ways

e These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details




Abstract Data Types

e Data structures, or , are powerful abstractions that
allow programmers to store data in structured, organized ways

e These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

K-’ An abstraction for

the ,bkagra.mmer./



Abstract Data Types

e Data structures, or , are powerful abstractions that
allow programmers to store data in structured, organized ways

e These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

e While we specifically study implementations of ADTs from the Stanford C++
libraries, these principles transcend language boundaries



Abstract Data Types

e Data structures, or , are powerful abstractions that
allow programmers to store data in structured, organized ways

e These ADTs give us certain guarantees about the organization and properties
of our data, without our having to worry about managing the underlying details

e While we specifically study implementations of ADTs from the Stanford C++

libraries, these principles transcend language boundaries

o We will do our best to point out comparisons to Java and Python along the way.
o We will not be learning how to use the standard C++ (STL) data structures. If you're interested in
learning more about these, check out the


http://web.stanford.edu/class/cs106l/

Vectors



What is a vector?

e At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.




What is a vector?

e At a high level, a vector is an collection of elements of the same type

that can grow and shrink in size.
o Each element in the collection has a specific location, or




What is a vector?

e At a high level, a vector is an ordered collection of

that can grow and shrink in size.
o Each element in the collection has a specific location, or index
o All elements in a vector must be of the same type. Unlike in other programming languages, a
single vector cannot contain elements of mixed types.




What is a vector?

e At a high level, a vector is an ordered collection of elements of the same type

that can
o Each element in the collection has a specific location, or index
o All elements in a vector must be of the same type. Unlike in other programming languages, a
single vector cannot contain elements of mixed types.
o Vectors are flexible when it comes to the number of elements they can store. You can easily
add and remove elements from a vector. Vectors also know their size, meaning you can query

them to see how many elements they currently contain.




What is a vector?

e At a high level, a vector is an ordered collection of elements of the same type

that can grow and shrink in size.
o Each element in the collection has a specific location, or index
o All elements in a vector must be of the same type. Unlike in other programming languages, a

single vector cannot contain elements of mixed types.
o Vectors are flexible when it comes to the number of elements they can store. You can easily
add and remove elements from a vector. Vectors also know their size, meaning you can query

them to see how many elements they currently contain.
e Analogs in other languages: 1ist in Python and ArrayList in Java




What is a vector?

e At a high level, a vector is an ordered collection of elements of the same type

that can grow and shrink in size.
o Each element in the collection has a specific location, or index
o All elements in a vector must be of the same type. Unlike in other programming languages, a
single vector cannot contain elements of mixed types.
o Vectors are flexible when it comes to the number of elements they can store. You can easily
add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

e Analogs in other languages: 1ist in Python and ArrayList in Java
e Defined inthe "vector.h" header file of the Stanford C++ libraries



What is a vector?

e At a high level, a vector is an ordered collection of elements of the same type

that can grow and shrink in size.
o Each element in the collection has a specific location, or index
o All elements in a vector must be of the same type. Unlike in other programming languages, a
single vector cannot contain elements of mixed types.
o Vectors are flexible when it comes to the number of elements they can store. You can easily
add and remove elements from a vector. Vectors also know their size, meaning you can query
them to see how many elements they currently contain.

e Analogs in other languages: 1ist in Python and ArrayList in Java

e Definedinthe "vector.h" of the Stanford C++ libraries
A collection of function profotypec that

allswe for code sharing and reuse.



Basic Vector Operations: Creation




Basic Vector Operations: Creation

Vector<int> wvec;




Basic Vector Operations: Creation

Vector<int> wvec;

Vector<int>

vec




Basic Vector Operations: Creation

Vector<int> wvec;

K_’ Mucet Cpecifj/ the

type of values
that will be held

at creation Time.

Vector<int>

vec




Basic Vector Operations: Creation

Vector<int> wvec;

Vector<int>

o

Default ctate of

mitiafization I¢

vec

emply




Basic Vector Operations: Adding Elements

Vector<int> wvec;

vec.add (4) ;

Vector<int>




Basic Vector Operations: Adding Elements

Vector<int> wvec;

vec.add (4) ;

value:

index: n

vec

Vector<int>




Basic Vector Operations: Adding Elements

Vector<int> wvec;

vec.add (4) ;

value:

index: n

Vector<int>

Note: indexing VEC
ctarts af 0




Basic Vector Operations: Adding Elements

Vector<int> wvec;

vec.add (4) ;

vec.add (8) ;

Ean

vec

Vector<int>




Basic Vector Operations: Adding Elements

Vector<int> vec;
vec.add (4) ;

vec.add (8) ;

EoED

AR

vec.add (15) ;

Vector<int>

vec




Basic Vector Operations: Creating + Adding Together

Vector<int> vec = {4, 8, 15};

EoED

AR

vec

Vector<int>




Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[l] << endl;

EoED

AR

vec

Vector<int>




Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[l] << endl;

OED

AR

vec

Vector<int>




Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[3] << endl;

EoED

AR

vec

Vector<int>




Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[3] << endl;

EoED

Poll: What will be the
output of the above
code snippet?

AR

vec

Vector<int>




Basic Vector Operations: Accessing Elements

Vector<int> vec = {4, 8, 15};
cout << vec[3] << endl;
// this will throw an error!

// takeaway: Vector does

Vector<int>

bounds checking and will not

allow you to access elements
that are out of bounds vec




Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};
cout << vec[l] << endl;

vec.remove (0) ;

EoED

AR

vec

Vector<int>




Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[l] << endl;

EoED

vec.remove (0) ;

AR

Specify the vecC

to remove at

Vector<int>




Basic Vector Operations: Removing Elements

Vector<int> vec = {4, 8, 15};

cout << vec[l] << endl;

T

vec.remove (0) ;

AR

vec

Vector<int>




Basic Vector Operations: Number of Elements

Vector<int> vec = {4, 8, 15};
cout << vec[l] << endl;

vec.remove (0) ;

T

AR

vec

cout << vec.size() << endl;

Vector<int>




Basic Vector Operations: Number of Elements

Vector<int> vec = {4, 8, 15};
cout << vec[l] << endl;

vec.remove (0) ;

T

cout << vec.size() << endl;

Vector<int>

o
Output:

2 vec




Traversing a Vector

e Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};

for (int i = 0; i < vec.size(); i++) {
cout << vec[i] << endl;




Traversing a Vector

e Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};
for (int i = 0; i < vec.size();

cout << vec[i] << endl;

i++) |

Output:
1

O

6




Traversing a Vector

e Method 1: Traditional for loop
Vector<int> vec = {1, 0, 6};
for (int i = 0; 1 < vec.size(); i++) { OUtPUt'
cout << vec[i] << endl; 1
}

e Method 2: for-each loop O
Vector<int> vec = {1, 0, 6}; 6
for (int num: vec) {

cout << num << endl;



Vector Functions

#include "vector.h"

e The following functions are part of the Vector collection, and can be useful:

o vec.size (): Returns the number of elements in the vector.

o wvec.isEmpty (): Returns true if the vector is empty, false otherwise.

o wvec][i]: Selects the ith element of the vector.

0 wvec.add(value): Adds a new element to the end of the vector.

0 vec.insert (index, wvalue):Inserts the value before the specified index, and moves the
values after it up by one index.

o vec.remove (index): Removes the element at the specified index, and moves the rest of the
elements down by one index.

o vec.clear (): Removes all elements from the vector.

0 vec.sort (): Sorts the elements in the list in increasing order.

e [or the exhaustive list, check out the documentation


https://web.stanford.edu/dept/cs_edu/cppdoc/Vector-class.html

Vector Functions

#include "vector.h"

e The following functions are part of the Vector collection, and can be useful:

o wvec.size (): Returns the number of elements in the vector.

o wvec.isEmpty (): Returns true if the vector is empty, false otherwise.

o wvec[i]: Selects the ith element of the vector.

o wec.add (wvalue): Adds a new element to the end of the vector.

0 vec.insert (index, wvalue):Inserts the value before the specified index, and moves the
values after it up by one index.

o vec.remove (index): Removes the element at the specified index, and moves the rest of the
elements down by one index.

o vec.clear (): Removes all elements from the vector.

o wvec.sort (): Sorts the elements in the list in increasing order.

e [or the exhaustive list, check out the documentation


https://web.stanford.edu/dept/cs_edu/cppdoc/Vector-class.html

A vector example

[demo + poll]



Eliminating Negativity

Consider the following task: Given a
Vector of integers, write a function
that eliminates negativity from the
vector by changing the sign of all
negative values to turn them into
their positive equivalents




Eliminating Negativity

e Consider the following task: Given a void eliminateNegativity (Vector<int> v
V. fi . f . for (int i 0; i v.size i
ector of integers, write a function if (viil < 0
that eliminates negativity from the vii 1> vl

vector by changing the sign of all
negative values to turn them into

their positive equivalents int main
. Vector<int> nums 1 4, 18 11
e Poll: What is the output of the code eliminateNegativity (nums
sni pp et? cout nums endl



Eliminating Negativity

e Consider the following task: Given a void eliminateNegativity (Vector<int> v
\/ t f. t T f t. for (int 1 0; i v.size i
ector of integers, write a function iF vl 0
that eliminates negativity from the vii 1*vli

vector by changing the sign of all
negative values to turn them into

their positive equivalents int main
. Vector<int> nums 1 4, 18 11
e Result: The vector is passed by eliminateNegativity (nums

cout nums endl

value, so a copy is modified, and no
changes persist.



Eliminating Negativity

e Consider the following task: Given a void eliminateNegativity (Vector<int> v
. . . for (int i 0; i v.size i
Vector of integers, write a function if (wiil < O
that eliminates nega 1 1> vl

vector by changing §'0 AD’W L'/O we a//ow
negative values to t . .
their positive equiva /[UVI ctions Co mac//@
® Result: The vector is
value, so a copy is 1
changes persist.

|t> nums 1 4, 18 11
Negativity (nums

V€ C 7‘0 // f .7 jums endl




Pass by reference

(i.e. How do we efficiently and effectively handle data
structures in functions?)



pass by value
When a parameter is passed into a function,
the new variable stores a copy of the passed
in value in memory




pass by reference
When a parameter is passed into a function,
the new variable stores a reference to the
passed in value, which allows you to directly
edit the original value



What exactly is a reference?

e Regular variables look like this:

We will think of a
variable as a




What exactly is a reference?

e References look like this: l

We will think of a
reference as




What exactly is a reference?
double&

e References look like this: l

weight ref
References have

and ,
just like regular
variables.




What exactly is a reference?

[he type has an ampersand
double& K\[& } after it to indicate ite a

® References look like this:
reference to that data type

weight_ref rather than the type itself.
References have -

names and types,
just like regular
variables.




What exactly is a reference? double&

e References look like this: .

weight ref

Here’s what this would look
like in code:
void tripleWeight(double& weight ref) {

weight ref *= 3;
}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}



What exactly is a reference? double&

e References look like this: .

weight ref

Here’s what this would look
like in code:
void tripleWeight(double& weight ref) {

weight ref *= 3;
}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}



What exactly is a reference? double&

e References look like this: .

weight ref

Here’s what this would look
like in code:

void tripleWeight(double& weight ref) {
weight ref *= 3;

}

weight
int main() {
double weight = 1.06; <E;~\\\\

tripleWeight(weight); '
cout << weight << endl; But we don't u:’aa//y werite code

du'g' wag...




When we use references

e To allow helper functions to edit data structures in other functions




When we use references

e To allow helper functions to edit data structures in other functions
o But why don’t we just return a copy of the data structure?




When we use references

e To avoid making new copies of large data structures in memory
o Passing data structures by reference makes your code more efficient!




When we use references

e References also provide a workaround for multiple return values

o Your function can both have a return value and also directly edit a Vector object passed in as a
parameter. This makes it as if your function is returning both the vector and the actual return
value!



When we use references

e To allow helper functions to edit data structures in other functions
o But why don’t we just return a copy of the data structure?

e To avoid making new copies of large data structures in memory
o Passing data structures by reference makes your code more efficient!

e References also provide a workaround for multiple return values
o Your function can take in multiple pieces of information by reference and modify them all. In this
way you can "return" both a modified Vector and some auxiliary piece of information about how
the structure was modified. This makes it as if your function is returning two updated pieces of
information to the function that called it!



Revisiting
eliminateNegativity

[demo]



When we don’t use references

e |f we always used references, functions would all be able to edit one another’s

variables, and scoping would get confusing!

o This would also make bugs much more likely. Unexpected and unintended changes to variables
could persist across functions.




When we don’t use references

e When the data itself is small (i.e. the cost of copying by value is low), then we
don’t need to use a reference.




When we don’t use references

e Note: You can't provide a literal as an argument if you are passing a parameter

by reference.
void tripleWeight(double& weight_ref); L/-\DOh’Zf do thie!

tripleWeight(1.06); Compiler ervor!



When we don’t use references

e [f we always used references, functions would all be able to edit one another’s

variables, and scoping would get confusing!
o This would also make bugs much more likely. Unexpected and unintended changes to variables
could persist across functions.

e When the data itself is small (i.e. the cost of copying by value is low), then we
don’t need to use a reference.

e Note: You can't provide a literal as an argument if you are passing a parameter
by reference.



What's next?



Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Stacks and Queues




