Dynamic Memory and
Arrays

What are real-world examples of classes and
abstractions?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

e

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

What are the fundamental

TOdaY S building blocks of data
g uestion storage provided by C++?

Review

Tod ay’S . Classes Wrap-up (Bank
. Account)
topics

Dynamic Allocation and
Arrays

Implementing OurVector

Review

How do we accomplich thic in
C++.7 With !

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality

class
A class defines a new data type for our
programs to use.

encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the class itself).
o A class defaults to private members (accessible only inside the class
implementation).

Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

instance
When we create an object that is our new type,
we call this creating an instance of our class.

Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;

How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, clasces are uceful in helping ue with complex programs where
information can be grovped info objects.

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
object they’re operating on

e When you don’t have a constructor, there’s a default O argument constructor

that instantiates all private member variables
o (We’ll see an explicit constructor tomorrow!)

An example:
Structs vs. classes
(BankAccount)

Takeaways

e The constructor is a specially defined method for classes that initializes the

state of new objects as they are created.
o Often accepts parameters for the initial state of the fields.
o Special naming convention defined as ClassName ()
o You can never directly call a constructor, but one will always be called when declaring a new
instance of an object

e this
o Refers to the current instance of an object that a method is being called on
Similar to the self keyword in Python and the this keyword in Java
Syntax: this->memberVariable
Common usage: In the constructor, so parameter names can match the names of the object's

o O O

member variables.

Announcements

Announcements

e The will be released later tonight!

o The link to access your personalized diagnostic access portal will be posted on the homepage
of the website tonight at 12:01am PDT Friday and will remain up until 11:59pm PDT Sunday.

o Do not visit this link until you are ready to complete the diagnostic.

o We are logging download and submission times — you must download and submit the
diagnostic within a 3-hour time span.

e Assignment 3 is due tonight, Thursday, July 16 at 11:59pm.
e Trip is hosting a diagnostic review session tonight at 7pm PDT.

e Revisions for Assignment 2 are now available.

http://web.stanford.edu/class/cs106b/assessments/diagnostic/

Words of Advice

e Best of luck on the diagnostic! We hope that you all rock it!

e This is chance to demonstrate how much you've learned in just 3 weeks. The
purpose of the diagnostic is truly "diagnostic" — to help you self-assess your
own areas of strength and areas of potential growth. We expect everyone to
have areas of improvement!

e Make sure to collect the resources that you plan to use in advance.

e Get a good night's sleep, eat a solid meal, get some exercise, and rock the
diagnostic!

Where are we now?

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

v

v

arrays

dynamic memory
management

linked data structures

testing ‘/

algorithmic analysis \/

recursive problem-solving ‘/

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

linked data structures

testing

algorithmic analysis

recursive problem-solving

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

\/_\ Ueve now crosced the

abstraction bauudary./

linked data structures

testing

algorithmic analysis

recursive problem-solving

RandomBag Revisited

#pragma once
#include "vector.h"

class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size () const;
bool isEmpty () const;

private:
Vector<int> elems;

};

Turtles All the Way Down?

e Lasttime, we implemented a RandomBag on top of our library
Vector type.

Turtles All the Way Down?

e Lasttime, we implemented a RandomBag on top of our library
Vector type.

e Butthe Vector type is itself an abstraction (provided library) —
what is it layered on top of?

Turtles All the Way Down?

e Lasttime, we implemented a RandomBag on top of our library
Vector type.

e Butthe Vector type is itself an abstraction (provided library) —
what is it layered on top of?

o What are the fundamental building blocks provided

by the language, and how do we use them to build our own
custom classes?

What are the fundamental
building blocks of data storage
provided by C++7?

Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

e That storage space is acquired using

Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

e That storage space is acquired using

e Essentially:

o You can, at runtime, ask for extra storage space, which C++ will give to you.
o You can use that storage space however you’d like.
o You have to explicitly tell the language when you’re done using the memory.

Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Index: 0 1 2 3 4 5 6

Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If

the array elements have type T, the pointer will have type
O e.g.int*, string*, Vector<double>*

Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If

the array elements have type T, the pointer will have type
O e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.

Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If

the array elements have type T, the pointer will have type
O e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.
e In two separate steps:

T* arr;
arr = new T[size];

Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If

the array elements have type T, the pointer will have type
O e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.
e In two separate steps:

T* arr;
arr = new T[size];

® Or, inthe same line:

T* arr = new T[size];

Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.

, which is like the specific coordinates of where a piece of
memory exists on the computer.

Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.
, which is like the specific coordinates of where a piece of
memory exists on the computer.

e Thus, they quite literally "point" to another location on your computer.

Dynamic Allocation
Demo

int main() {
int numValues
string* arr

for (int 1 =
arr[i]

0;

}
for (int 1 0;
cout << 1 <L

getLine ("Enter a string:

getInteger ("How many lines? ");

new string[numValues];

i1 < numValues; i++) {

");

i < numValues;

" .

i++) {
" << arr[i] << endl;

int main() {
int numValues
string* arr

for (int 1 =
arr[i]

0;

}
for (int 1 0;
cout << 1 <L

getLine ("Enter a string:

getInteger ("How many lines? ") ;

new string[numValues];

i1 < numValues; i++) {

");

i < numValues;

" .

i++) {
" << arr[i] << endl;

int main() {

int numValues
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout < 1

(e

numValues

= getInteger ("How many lines? ") ;

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ") ;

O0; 1 < numValues; i++) {
<< ": " L arr[i] << endl;

int main() {

int numValues
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout < 1

(e

numValues

= getInteger ("How many lines? ") ;

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ") ;

O0; 1 < numValues; i++) {
<< ": " L arr[i] << endl;

int main() {

int numValues =
string* arr

for (int 1 =

arr[i]
}

for (int 1

cout <K 1 L

(e

getInteger ("How many lines? ");

= new string[numValues];

0; i < numValues; i++) {
getLine ("Enter a string: ");
O0; 1 < numValues; i++) {

numValues

" .

" << arr[i] << endl;

'
arr

int main() {

int numValues =
string* arr =

for (int 1 =
arr[i] =

}

for (int 1 =
cout << 1

(e

numValues

getInteger ("How many lines? ");
new string[numValues];

O0; i < numValues; i++) {

getLine ("Enter a string: ") ;

O0; 1 < numValues; i++) {
<< ": " L arr[i] << endl;

I
0x8084ffff '
arr

int main() {
int numValues
string* arr

for (int 1 =
arr[i]

0;

}
for (int 1 0;
cout <K 1 <

(e

numValues

getLine ("Enter a string:

getInteger ("How many lines? ");

new string[numValues];

i1 < numValues; i++) {

");

i < numValues;

" .

i++) {
" << arr[i] << endl;

I
0x8084ffff '
arr

Index:

int main() {

int numValues =
string* arr =

for (int 1 =

getInteger ("How many lines? ");
new string[numValues];

0; i < numValues; i++) {

getLine ("Enter a string: ") ;

'\
arr

arr[i] =
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} — .
(o))
numValues
Index: 0 1

Becavse the variable arr
pointe to the array, it is
R 3 . called a

int main() {
int numValues
string* arr

for (int 1 =
arr[i]

0;

}
for (int 1 0;
cout <K 1 <

(e

numValues

getLine ("Enter a string:

getInteger ("How many lines? ");

new string[numValues];

i1 < numValues; i++) {

");

i < numValues;

" .

i++) {
" << arr[i] << endl;

I
0x8084ffff '
arr

Index:

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

numValues

string

[]
Ox8084ffff ' g '
arr [

Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

numValues

string

[]
Ox8084ffff ' g '
arr [

Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We Can
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We Can
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We Can Dance
Index: 0 1 2

int main() {
int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' Ox8084ffff ' E '
numValues arr i
We Can Dance
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getline("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getline("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance If
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance If
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance If
Index: 0 1 2

int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr = new string[numValues];
for (int 1 = 0; 1 < numValues; i++) {
arr[i] = getlLine("Enter a string: ") ;
}
for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;

*

(e

string

[]
Ox8084ffff ' g '
arr [

numValues
We Can Dance If
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ") ;

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} [— > —
(o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} [— > —
(o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} [— > —
(o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} [— > —
(o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "]
o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can Dance If We Want
Index: 0 1

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getlLine("Enter a string: ");
}
for (int 1 = 0; i1 < numValues; i++) {
cout < 1 << ": " K< arr[i] << endl;
} JE— , —
} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can Dance If We Want
Index: 0 1

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getline("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "]
o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getline("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "]
o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "]
o))
} E 7 ' Ox8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "] [|
o))
} E 7 ' Ox8084ffff ' E 7 '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1 2

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int i = 0; i1 < numValues; i++) ({

cout < 1 << ": " K< arr[i] << endl;

} | "] [|
o))
} E 7 ' Ox8084ffff ' E 7 '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1 2

int main() {

int numValues
string* arr =

= getInteger ("How many lines? ");
new string[numValues];

Index:

for (int 1 = 0; i1 < numValues; i++) 0: We
arr[i] = getlLine("Enter a strin)
} [i] g (91. can
for (int 1 = 0; i < numValues; i++) 2: Dance
cout < 1 << ": " L arr[i] e13' If
SR - || MR
> 6: To
numValues arr
\
We Can Dance If We Want To
0 1 2 3 4 5 6

int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int 1 = 0; i1 < numValues; i++) {

cout < 1 << ": " K< arr[i] << endl;

} | "]
o))
} E 7 ' 0x8084ffff '
[7)]
numValues arr
We Can Dance If We Want To
Index: 0 1 2

Dynamically Allocating Arrays

e C++’s language philosophy prioritizes speed over safety and simplicity.

Dynamically Allocating Arrays

e C++’s language philosophy prioritizes speed over safety and simplicity.

e The array you get from new[] is . it can neither grow nor

shrink once it’s created.
o The programmer’s version of “conservation of mass.”

Dynamically Allocating Arrays

e C++’s language philosophy prioritizes speed over safety and simplicity.

e The array you get from new[] is . it can neither grow nor

shrink once it’s created.
o The programmer’s version of “conservation of mass.”

e The array you get from new][] has Walking off the

beginning or end of an array triggers undefined behavior.
o Literally anything can happen: you read back garbage, you crash your program, you
let a hacker take over your computer, or you make the front page of the New York
Times...

“All the News

That's Fit to Print" >

¢ New fork Cime

Lats Edton
h!’nhﬁy ey, embder.
l.n% 1--101“

mmnch«.@-
Hgh 38, low 41, Dewie, poge Die

VOLCXXXVIIT ... No. 47877 copyrute €200 v tow Tork Tans "~

NEW YORK, FRIDAY, NOVEMBER 4, 198§

S cwmny g T mn S Sew Ph Tl s o Lang blani

JSCEN'TSI

Registration Off

Thxre has boes & preseasxed
deciire i e peroertage of ef)-
#ble Arericars whe sov reggs
wred 13 voue, 8 reanarch groop
fepans

m—ug.mmtnuu« 2
cligble Amcrxam wiw
| megatered -nunndmb
| Ta-percex, dewn 11 pana
|t e 1080 bl -

Tha graup's undy canladd |
hat In many of Be 2 ek
winre el [gures are asale
ablc U dechae was among

Guv Micheel 8 Dukaicis having Ris pictare ticen by
270 year ofd 1am 31 3 1oam maesng I Fairieas This,
Pa. Mglndmmnmhn

phasined the drag peablecs. Page AlS. Vics Sres

kaowledged beiag 2 iberal, M. Haah ot
thiat “this election s not abow labels.” Fage A IS

‘Virus’ in Military Computers

Disrupts Systems Nationwide_

By JOMN MARKOFF

12 a0 wervees thae ramee gare-

By loe peaerday afermacn
Omgeicr eajers worr calleg
he wirws e barges! woed ever
on (he ration’s campaters.
The Rig b

“The Mg des b (i & el

Chifford Sl & compaer s
cury sxpent 31 Harvand Uy
gy, added: “Theve b e oo 395
N aseger Wio 3 sol lcarag
B ha¥ csl '3 cuaing esor-
maus heachckas ”

The sllectad corepatrrs carry 3
wremmendons wanety of dusscs

nlznr; oficials, reseacthery
a3 carporstions.

B same seastive midtary
data are lpvalved, e compuners

L T
o ¢ comtrol of socicar woapons,
are thought =t o bawve bemn
i bend Yy Do vmix

ParstictimMtees Vo

Coorpuaoes virumes aw w ey
s paraiel bs O con
[T d the dehwvior of ble
Ml vruses A virus i 8 pre
Fram, or & =t of Etructions 1
cormputer, amt s ekher plaroed
o= 3 Soppy ik Teart 13 be uaee

ating weer boes o
Sala setwarks with cther comrpet-
o

The prugrarss caz cagy them-
mmhm"‘m
scllwace, or operaang SFens,
u—ly-ﬂ:uulnm.uu.
don 1 dwewsehes Froe Dere,
the progaam can be passed
28100 | cormpaters.

hwtah;mim p——

e saftware’s cromtor, the pro-
ETADR gk (3808 & prevICanve
Per ceherwias RAIANeE esie gr
I appear on e :uwunn

PENTAGON REPORTS
INPROPER CHARGES *
FOR CONSULTANTS

CONTRACTORS CRITICIZID

e

Inquary Shows Routing Billing
of Government by Industry *
— on Foes, Some Dubious

By JOMN H CUSHMAN J¢
DO e P TN e ’

—
VASHINCTION, Nov. 3 — A Pl

ndey ner, the contracians’ ows palicies

wrh avail Grectly Deew(i Do MiMary
o % 51 be pad for by the Deferne De

creen O 1 coud 1y
desirwy duis & e cormpeaer's
menety. I Gds cams, the wimes
progras &9 rothlng more hen
reprodace ned! ragedy

The prograee wes sppa-ctly &
real of openees, et

;'nmr‘t |l.-- s et uv-
Beradcn Lovk ol Comebians

he Justoe Doper trmest’s com ey
15 eramdsal wrvesiipation bes focesed o
trrthn o commukants sad Sor roe

= e Cexgreny sad seling of wespons,
and research mbormation ameny Catiimerdon '\x'A—" Crdare? 303 the Dedarcs Deparumact bac e
‘ S craed S wsing cnsdlans 20

“All the News
That's Fit to Print"

Sble Arericars whe sov reggs
wred 13 voue, 8 reanarch groop
repans

Notmwally, e percesiage of
Amcxam wio are

hat In many of e 3 Pes
winre el [gures are asale
ablc U dechae was among

|

B Peh TR snom o0 Loy o

Nl

JUDGMENT DAY

The Sentencing of Robert Morris Jr.

PENTAGON REPORTS
ide. | NPROPER CHARGES *

| FOR CONSULTANTS

CONTRACTORS CRITICI

mddeary

- Inguary Shows Routine Billing
of Government by Industry *
41— on Foes, Some Debious

By JOMN K, CUSHMAN J¢

BN T P T

VASHINGION, Nov. 3 — A Pesin
b fourd

| Avall rectiy Deew(H Do midary

puter’ s £ 6 4s be pad lor By the Deferne De
atically rmert Ofies, Pentagon treetigs-
peanr's wrsdacoversd, this oot ls net et

,m Berader Lovk ol Camsebians

he Justoe Doper trmest’s com ey

LT R L cremtsal mrveslipetion hes focesed ol
Akt | wetion o9 commubants sad Ser rde ®
— e Cexgreny sad seling of wespons,
and the Defares Deparumact bac e

creed S wing cmsdans w0

Now 1Mo ~raer 3 o =3

Memory from the Stack vs. Heap

Vector<string> varOnStack; string* arr = new string[numValues];

e Until today, all variables we've
created get defined on the

We can now request memory from the

e This is called static memory allocation ® Thisis called dynamic memory allocation

) e We have more control over variables on
e Variables on the stack are stored

_ the heap
directly to the memory and access to
this memory is very fast e But this means that we also have to
handle the memory we’re using carefully
e We don’t have to worry about and properly clean it up when done

memory management

Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.

Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.

o Memory allocation is the process by which the computer hands you a piece of
computer memory in which you can store data.

Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.

o Memory allocation is the process by which the computer hands you a piece of
computer memory in which you can store data.

o Memory deallocation is the process by which control of this memory (data storage
location) is relinquished back to the computer

Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

e When using new, you are responsible for deallocating the memory

you allocate.

Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

e When using new, you are responsible for deallocating the memory
you allocate.

e If you don't,you geta . Your program will never be

able to use that memory again.

o Too many leaks can cause a program to crash — it’'s important to not leak
memory!

Cleaning Up
® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

| — -
ptr

42

42

Cleaning Up
e You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

delete|] > U

42

42

Cleaning Up
e You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

delete|]

Cleaning Up
® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

*
)

ptr

Cleaning Up

® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.

o You can think of this operation as relinquishing control over the memory back to the computer.

ptr

ptrisnow a . We
can re-assign it to point somewhere
else, but if we try to read from it or

write to it, very bad, bad things will
happen!

Takeaways

e You can create arrays of a fixed size at runtime by using new[].

e C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

e You are responsible for freeing any memory you explicitly allocate by calling
delete][].

e Once you've deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.

Designing OurVector

Arrays vs. Vectors — A Common Mistake

e Notice that we access the elements of an array just like we access them in a
Vector, with square brackets.

° — they don't have any functions associated with
them.

e SO, you can't do this:
int len = firstTen.length(); // ERROR! No functions!

firstTen.add(42); // ERROR! No functions!
firstTen[10] = 42; // ERROR! Buffer overflow!

Breakout Activity:
OurVector class design

Summary

Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

e When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much
memory something needs.

o We use the keyword new to allocate dynamic memory.

o We keep track of that memory with a pointer. (more on pointers next week!)
o We must clean up the memory when we’re done with delete.

Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

e When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much

memory something needs.

o We use the keyword new to allocate dynamic memory.
o We keep track of that memory with a pointer. (more on pointers next week!)
o We must clean up the memory when we’re done with delete.

e So far, we've learned how to allocate dynamic memory using arrays, which
give us a contiguous block of memory that all stores one particular type (int,
string, double, etc.).

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

e

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

real-world
algorithms

Life after CS1068/

algorithmic recursive
analysis problem-solving

Implementing a Dynamic ADT

