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How do we accomplich thic in
C++.7 With !

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality




class
A class defines a new data type for our
programs to use.




encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible



What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the class itself).
o A class defaults to private members (accessible only inside the class
implementation).



Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

instance
When we create an object that is our new type,
we call this creating an instance of our class.



Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;



How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, clasces are uceful in helping ue with complex programs where
information can be grovped info objects.



Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.



Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
object they’re operating on

e When you don’t have a constructor, there’s a default O argument constructor

that instantiates all private member variables
o (We’ll see an explicit constructor tomorrow!)



An example:
Structs vs. classes
(BankAccount)



Takeaways

e The constructor is a specially defined method for classes that initializes the

state of new objects as they are created.
o Often accepts parameters for the initial state of the fields.
o  Special naming convention defined as ClassName ()
o You can never directly call a constructor, but one will always be called when declaring a new
instance of an object

e this
o Refers to the current instance of an object that a method is being called on
Similar to the self keyword in Python and the this keyword in Java
Syntax: this->memberVariable
Common usage: In the constructor, so parameter names can match the names of the object's

o O O

member variables.



Announcements



Announcements

e The will be released later tonight!

o The link to access your personalized diagnostic access portal will be posted on the homepage
of the website tonight at 12:01am PDT Friday and will remain up until 11:59pm PDT Sunday.

o Do not visit this link until you are ready to complete the diagnostic.

o  We are logging download and submission times — you must download and submit the
diagnostic within a 3-hour time span.

e Assignment 3 is due tonight, Thursday, July 16 at 11:59pm.
e Trip is hosting a diagnostic review session tonight at 7pm PDT.

e Revisions for Assignment 2 are now available.


http://web.stanford.edu/class/cs106b/assessments/diagnostic/

Words of Advice

e Best of luck on the diagnostic! We hope that you all rock it!

e This is chance to demonstrate how much you've learned in just 3 weeks. The
purpose of the diagnostic is truly "diagnostic" — to help you self-assess your
own areas of strength and areas of potential growth. We expect everyone to
have areas of improvement!

e Make sure to collect the resources that you plan to use in advance.

e Get a good night's sleep, eat a solid meal, get some exercise, and rock the
diagnostic!



Where are we now?
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RandomBag Revisited



#pragma once
#include "vector.h"

class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size () const;
bool isEmpty () const;

private:
Vector<int> elems;

};







Turtles All the Way Down?

e Lasttime, we implemented a RandomBag on top of our library
Vector type.
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Turtles All the Way Down?

e Lasttime, we implemented a RandomBag on top of our library
Vector type.

e Butthe Vector type is itself an abstraction (provided library) —
what is it layered on top of?

o What are the fundamental building blocks provided

by the language, and how do we use them to build our own
custom classes?



What are the fundamental
building blocks of data storage
provided by C++7?



Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.
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Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

e That storage space is acquired using

e Essentially:

o You can, at runtime, ask for extra storage space, which C++ will give to you.
o You can use that storage space however you’d like.
o You have to explicitly tell the language when you’re done using the memory.



Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called
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e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.
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Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Index: 0 1 2 3 4 5 6
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Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If

the array elements have type T, the pointer will have type
O e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.
e In two separate steps:

T* arr;
arr = new T[size];

® Or, inthe same line:

T* arr = new T[size];



Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.
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, which is like the specific coordinates of where a piece of
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Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.
, which is like the specific coordinates of where a piece of
memory exists on the computer.

e Thus, they quite literally "point" to another location on your computer.



Dynamic Allocation
Demo
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" << arr[i] << endl;
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int main() {

int numValues
string* arr =

= getInteger ("How many lines? ");
new string[numValues];
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int main() {

int numValues =

getInteger ("How many lines? ");
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getlLine("Enter a string: ");

}

for (int 1 = 0; i1 < numValues; i++) {

cout < 1 << ": " K< arr[i] << endl;
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Dynamically Allocating Arrays

e C++’s language philosophy prioritizes speed over safety and simplicity.

e The array you get from new[] is . it can neither grow nor

shrink once it’s created.
o The programmer’s version of “conservation of mass.”

e The array you get from new][] has Walking off the

beginning or end of an array triggers undefined behavior.
o Literally anything can happen: you read back garbage, you crash your program, you
let a hacker take over your computer, or you make the front page of the New York
Times...
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Memory from the Stack vs. Heap

Vector<string> varOnStack; string* arr = new string[numValues];

e Until today, all variables we've
created get defined on the

We can now request memory from the

e This is called static memory allocation ® Thisis called dynamic memory allocation

) e We have more control over variables on
e Variables on the stack are stored

_ the heap
directly to the memory and access to
this memory is very fast e But this means that we also have to
handle the memory we’re using carefully
e We don’t have to worry about and properly clean it up when done

memory management



Cleaning Up
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Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.

o Memory allocation is the process by which the computer hands you a piece of
computer memory in which you can store data.

o Memory deallocation is the process by which control of this memory (data storage
location) is relinquished back to the computer
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e When using new, you are responsible for deallocating the memory

you allocate.




Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

e When using new, you are responsible for deallocating the memory
you allocate.

e If you don't,you geta . Your program will never be

able to use that memory again.

o Too many leaks can cause a program to crash — it’'s important to not leak
memory!



Cleaning Up
® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.
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ptr
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delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.
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Cleaning Up
e You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.
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Cleaning Up
® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.
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Cleaning Up

® You can deallocate (free) memory with the operator:

delete[] ptr;

e This destroys the array pointed to by the given pointer, not the pointer itself.

o You can think of this operation as relinquishing control over the memory back to the computer.

ptr

ptrisnow a . We
can re-assign it to point somewhere
else, but if we try to read from it or

write to it, very bad, bad things will
happen!




Takeaways

e You can create arrays of a fixed size at runtime by using new[].

e C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

e You are responsible for freeing any memory you explicitly allocate by calling
delete][].

e Once you've deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.



Designing OurVector



Arrays vs. Vectors — A Common Mistake

e Notice that we access the elements of an array just like we access them in a
Vector, with square brackets.

° — they don't have any functions associated with
them.

e SO, you can't do this:
int len = firstTen.length(); // ERROR! No functions!

firstTen.add(42); // ERROR! No functions!
firstTen[10] = 42; // ERROR! Buffer overflow!



Breakout Activity:
OurVector class design



Summary
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Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

e When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much

memory something needs.

o We use the keyword new to allocate dynamic memory.
o  We keep track of that memory with a pointer. (more on pointers next week!)
o We must clean up the memory when we’re done with delete.

e So far, we've learned how to allocate dynamic memory using arrays, which
give us a contiguous block of memory that all stores one particular type (int,
string, double, etc.).



What's next?
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Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

real-world
algorithms

Life after CS1068/

algorithmic recursive
analysis problem-solving




Implementing a Dynamic ADT




