Recursive Fractals

What examples of recursion have you encountered
in day-to-day life (not programming-related)?
(put your answers the chat)
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Today'’s
guestion

How can we use visual
representations to
understand recursion?

How can we use recursion
to make art?




Today'’s
topics

Review

Defining recursion in the
context of fractals

. The Cantor Set

. The Sierpinski Carpet

Revisiting the Towers of
Hanoi




Review



recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
tasks of the same form.




Recursion Review

e Recursion is a problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.
o Arecursive operation (function) is defined in terms of itself (i.e. it calls itself).




Recursion Review

® Recursion has two main parts: the base case and the recursive case.

o Base case: Simplest form of the problem that has a direct answer.
o Recursive case: The step where you break the problem into a smaller, self-similar task.




Recursion Review

e The solution will get built up as you come back up the call stack.

o The base case will define the “base” of the solution you’re building up.
o Each previous recursive call contributes a little bit to the final solution.
o The initial call to your recursive function is what will return the completely constructed answer.



Recursion Review

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.



Recursion Review

e Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

e Recursion has two main parts: the base case and the recursive case.
e The solution will get built up as you come back up the call stack.

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.



Example:
isPalindrome()



Write a function that returns if a string is a palindrome

A string is a palindrome if it reads the same both forwards and backwards:

({3

isPalindrome
isPalindrome(“racecar”) » true
isPalindrome(“step on no pets”) = true

(“level”) » true
(
(
isPalindrome(“high”) = false
(
(
("X
(

(13

(13

isPalindrome(“hi”) » false

13

isPalindrome(“palindrome”) = false

) = true

({3

isPalindrome
isPalindrome

(1%]

) » true



Approaching recursive problems

e ook for self-similarity.

e Try out an example and look for patterns.
o Work through a simple example and then increase the complexity.
o Think about what information needs to be “stored” at each step in the
recursive case (like the current value of n in each factorial stack frame).

e Ask yourself:

o What is the base case? (What is the simplest case?)
o What is the recursive case? (What pattern of self-similarity do you see?)



Discuss:
What are the base and
recursive cases?

(breakout rooms)
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e Look for self-similarity: racecar
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isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are °r’
o Check if “aceca” is a palindrome:
m Look at the first and last letters of “aceca” » both are ‘@’
m Checkif “cec” is a palindrome:
e Look at the first and last letters of “cec” = both are ‘c’
e Checkif “e” is a palindrome:

13 2

@ : “e” is a palindrome

What about the false case?



isPalindrome()

e Look for self-similarity: high




isPalindrome()

e Look for self-similarity: high

o Look at the first and last letters of “high” =+ both are ‘h’




isPalindrome()

e Look for self-similarity: high

o Look at the first and last letters of “high” =+ both are ‘h’
o Checkif “ig” is a palindrome:




isPalindrome()

e Look for self-similarity: high
o Look at the first and last letters of “high” =+ both are ‘h’
o Checkif “ig” is a palindrome:

m Look at the first and last letters of “ig” = not equal
O : Return false




isPalindrome()

e Base cases:
o isPalindrome(*”) » true
o isPalindrome(string of length 1) » true
o If the first and last letters are not equal » false

® Recursive case: If the first and last letters are equal,

isPalindrome(string) = isPalindrome(string minus first and last letters)




isPalindrome
() There can be multiple base

e Base cases: [ok recum'/ue} cases!
o isPalindrome(*”) » true
o isPalindrome(string of length 1) » true
o If the first and last letters are not equal » false

® Recursive case: If the first and last letters are equal,

isPalindrome(string) = isPalindrome(string minus first and last letters)




isPalindrome()

bool isPalindrome (string s) {
if (s.length() < 2) {
return true;
} else {
if (s[0] '= s[s.length() - 1]) {
return false;

}

return isPalindrome (s.substr(l, s.length() - 2));

}



isPalindrome() in action

int main() {
cout << boolalpha <<
isPalindrome (“racecar”)
<< noboolalpha << endl;
return O;
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isPalindrome() in action

int main() {

bool isPalindrome (string s) {

bool isPalindrome (string s) {

o sinenlls =

o sinenlls =

bool isPalindrome (string s) {
if (s.length() < 2) {
return true;

string

I
“Cec” .
S

} else {
if (s[0] !'= s[s.length() - 1]) {
} return false;
}
return isPalindrome (s.substr(l, s.length() - 2));

}
true




isPalindrome() in action

int main() {
bool isPalindrome (string s) {
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if (s.length < 2
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isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
1f (s.length < 2 « ”
1 gth () ) 1 racecar .
S

string

return true;

} } else {
if (s[0] !'= s[s.length() - 1]) {
return false;
}
return isPalindrome (s.substr(l, s.length() - 2));

true




isPalindrome() in action

int main() {
cout << boolalpha << .
isPalindrome (“racecar”) /DFI n fg t rue ./
<< noboolalpha << endl;
return O;




How can we use visual
representations to understand
recursion?



Self-Similarity
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e Solving problems recursively and
analyzing recursive phenomena

involves identifying
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Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.




Sell-cimilarity chowe vp in many real-world
obfects and phenomena, and is the key to
traly understanding their formation and

exisTence.



Graphical
Representations of
Recursion



Graphical Representations of Recursion

e Our first exposure to recursion

yesterday was graphical in nature!
o "Vee"is a recursive program that traces
the path of a sprite in Scratch
o  The sprite draws out a funky tree-like
structure as it goes along its merry way




Graphical Representations of Recursion

e Our first exposure to recursion

yesterday was graphical in nature!
o "Vee"is a recursive program that traces
the path of a sprite in Scratch
o  The sprite draws out a funky tree-like
structure as it goes along its merry way

e Graphical representations of
recursion allow us to visualize the
result of having

o Understanding this "branching" of the
tree is critical to solving challenging
problems with recursion




Fractals



Fractals

o A is any repeated, graphical pattern.
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o A is any repeated, graphical pattern.

e A fractal is composed of :
arranged in a structured way.
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Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :
arranged in a structured way.




Understanding Fractal
Structure
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What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different
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What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2. It has a different . called the , which
3. It has a different . indicates the complexity of
4. It has a different i the overall structure.




An order-0 tree
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An order-1 tree
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An order-2 tree

What differentiates the smaller tree from Fractals and self-similar
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An order-3 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2. It has a different i called the , which
3. It has a different . indicates the complexity of
4. It has a different . the overall structure.



An order-4 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2. It has a different i called the , which
3. It has a different . indicates the complexity of
4. It has a different . the overall structure.



What differentiates the smaller tree from

the bigger one?

1

2.
3.
4.

It's at a different
It has a different
It has a different
It has a different

Fractals and self-similar
structures are often defined
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called the , which
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the overall structure.



An order-3 tree
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An order-3 tree

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order- (n-1) trees starting
at the end of that line.

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.



An order-3 tree

An order-0 tree is nothing at all. -

An order-n tree is a line with two / )\ -~ '.. /\ /' a‘

smaller order- (n-1) trees starting ~ ~§ /

at the end of that line. ~ - ~\
—— ’

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.






We drew this
recurcively



Each recursive call just draws
one branch. The cum total of all

the recursive caflls draws the

whole tree.



An Awesome Website!

http://recursivedrawing.com/



http://recursivedrawing.com/

Announcements



Announcements

e Assignment 1 grades and commented feedback will be released on Paperless
by the end of the day today.

e Assignment 2 is due tomorrow at 11:59pm PDT.
e Assignment 3 will be released by the end of the day on Thursday.

e Make sure to check out our weekly announcement posts on Ed — there's lot of
important info contained there!

e Please send us your OAE accommodation letters if you haven't already!



How can we use recursion to
make art?



C++ Stanford
graphics library




Graphics in CS106B

e Creating graphical programs is not one of our main focuses in this class, but a
brief crash course in working with graphical programs is necessary to be able
to code up some fractals of our own.

e The Stanford C++ libraries provide extensive capabilities to create custom
graphical programs. The full documentation of these capabilities can be found
in the

e We will abstract away almost all of the complexity for you via provided helper

functions.
o There are two main classes/components of the library you need to know: and


https://web.stanford.edu/dept/cs_edu/cppdoc/

GWindow

e A GWindow is an abstraction for the
graphical window upon which we

will do all of our drawing.




increasing x

GWindow (0 O

e A GWindow is an abstraction for the
graphical window upon which we
will do all of our drawing.

e The window defines a coordinate

system of x-y values
o The top left corneris (0, 0)
o The bottom right corner is
(windowWidth, windowHeight)

increasing y




increasing x

GWindow (0, 0 —————

(200,100)

e A GWindow is an abstraction for the
graphical window upon which we
will do all of our drawing.

e The window defines a coordinate

system of x-y values
o The top left corneris (0, 0)
o The bottom right corner is
(windowWidth, windowHeight)

e Alllines and shapes drawn on the
window are defined by their (x,y)
coordinates

(400,250)

increasing y

v
D




increasing x

GPoint (0, 0) e ——

e A GPoint is a handy way to bundle up
the x-y coordinates for a specific point ‘GPoint (x,y)

in the window.
o Very similar in functionality to the

GridLocation struct we learned about
before!

increasing y




increasing x

>
- (OIO)
. . (200,100)
e A GPoint is a handy way to bundle up
the x-y coordinates for a specific point
in the window. ®
idpoint
o Very similar in functionality to the > eepess
GridLocation struct we learned about g o
before! S (400,250)
O
c

GPoint topLeft (200, 100);
GPoint bottomRight (400, 250);
drawFilledRect (topLeft, bottomRight) ;

GPoint midpoint = {

(topLeft.getX () + bottomRight.getX())/ 2,
(topLeft.getY() + bottomRight.getY())/ 2 Y
};




Cantor Set example



Cantor Set : = il : I-I i1l
[ I 1 [ [ 1]

e The first fractal we will code is called the "Cantor" fractal, named after the
late-19th century German mathematician Georg Cantor.

e The Cantor fractal is a set of lines where there is one main line, and below that
there are two other lines: each 5 of the width of the original line, with one on
the left and one on the right (with a '3 separation of whitespace between them)

® Below each of the other lines is an identical situation: two ¥z lines.

e This repeats until the lines are no longer visible.



An order-0 Cantor Set



An order-1 Cantor Set



An order-2 Cantor Set



An order-6 Cantor Set



An order-6 Cantor Set

Another Cantor Set



An order-6 Cantor Set

Another Cantor Set

Alco a Cantor Set



How to draw an order-n Cantor Set

GPoint start GPoint end
s 002000 -
S & & ]




How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
s 002000 -
& & & ]




How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
& & & $

! | \

2. Underneath the left
third, draw a Cantor
Set of order-(n - 1).



How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
L=
@ = & L]
2. Underneath the left 3. Underneath the right
third, draw a Cantor third, draw a Cantor
Set of order-(n - 1). Set of order-(n - 1).



How to draw an order-n Cantor Set

order == 0
1. Draw a line from start to end.
GPoint start GPoint end
L=
] = @ B
2. Underneath the left 3. Underneath the right
third, draw a Cantor third, draw a Cantor
Set of order-(n - 1). Set of order-(n - 1).



Cantor Set demo

[Qt Creator]
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Sierpinski Carpet
example






Sierpinski Carpet

e First described by Wactaw
Sierpinski in 1916

e A generalization of the Cantor Set
to two dimensions!

e Defined by the subdivision of a
shape (a square in this case) into

smaller copies of itself.
o The same pattern applied to a triangle
yields a Sierpinski triangle, which you
will code up on the next assignment.




An order-0 Sierpinski Carpet




An order-1 Sierpinski Carpet

An order-1 carpet is
subdivided into
eight order-0
carpets arranged in
this grid pattern




An order-2 Sierpinski Carpet




Practice and Discuss:

Draw the order-2 Sierpinski
carpet. What are the base and
recursive cases that define this
fractal?

(breakout rooms)



An order-2 Sierpinski Carpet




An order-2 Sierpinski Carpet




Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the
appropriate location
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Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the (091) (0,2)
appropriate location

e Recursive Case (order-n, n # Q)

o Draw 8 order n-1 Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location

(2,1) (2,2)




Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the (0,1) (0,2)
appropriate location
e Recursive Case (order-n, n # Q)
o Draw 8 order n-1 Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location
m i.e. Draw an n-1fractal at
(0,0), draw an n-1 fractal at
(0,1), draw an n-1fractal at (21) (2,2)
(0,2)...




Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):
if (order == 0)
drawFilledSquare(x, y, BASE SIZE)
else
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX(x, vy,
drawSierpinskiCarpet (newX(x, vy,

0), order -1)
1), order -1)
2) , order -1)
0), order -1)
2) , order -1)
0), order -1)
1), order -1)
2) , order -1)

0), new¥(x, vy,
1), newY¥(x, vy,
2), newY¥(x, vy,
0), new¥(x, vy,
2), newY¥(x, vy,
0), new¥(x, vy,
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~
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Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):

if (order == 0)
drawFilledS

else A 0 ° J
drawSierpin 7_ [r lgh t Ve,:y , 0, 0), order -1)
drawSierpin , 0, 1), order -1)
drawSierpin , 0, 2), order -1)
drawS:!.erp:!.n Pre#y’ ca” we do , 1, 0), order -1)
drawSierpin , 1, 2), order -1)
drawSierpin , 2, 0), order -1)
drawSierpin é tf 7 , 2, 1), order -1)
drawSierpin e er‘ , 2, 2), order -1)




Sierpinski Carpet Pseudocode (Take 2)

drawSierpinskiCarpet (x, y, order):

if (order == 0)
drawFilledSquare(x, y, BASE SIZE)
else
for row = 0 to row = 2:
for col = 0 to col = 2:
if (col '=1 || row '= 1):

X i = newX(x, y, row, col)
y i = newY¥(x ,y, row, col)
drawSierpinskiCarpet(x i, y i, order - 1)




lteration + Recursion

e [t's completely reasonable to mix iteration and recursion in the same function.

e Here, we're firing off eight recursive calls, and the easiest way to do that is with
a double for loop.

® Recursion doesn’t mean “the absence of iteration.” It just means “solving a
problem by solving smaller copies of that same problem.”

e Iteration and recursion can be very powerful in combination!



Revisiting the Towers
of Hanoi

[Recursive Part 2: Electric Boogaloo]



Pseudocode for 3 disks
3 DISKS
| (1) | I |
A B C A B C
(2) (3) (4)
(5) {6) (?)
B - +’ A B +'

1)  Move disk 1to destination (5) Move disk 1to source
2) Move disk 2 to auxiliary (6) Move disk 2 to destination

(
(
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination




Homework before tomorrow’s lecture

e Play Towers of Hanoi:

e Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

e Extra challenge (optional): How would you define this problem

recursively?

o Don’t worry about data structures here. Assume we have a function moveDisk (X, Y)
that will handle moving a disk from the top of post X to the top of post Y.


https://www.mathsisfun.com/games/towerofhanoi.html

What's next?



Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis




Advanced Recursion Examples

! 7<14
Move this tower.. .To this spindle. l .
TRé ﬁ :
.
L ol :

Time
C O( log n)




