
Recursive Fractals
What examples of recursion have you encountered

in day-to-day life (not programming-related)?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Today’s
question

How can we use visual
representations to
understand recursion?

How can we use recursion
to make art?

Today’s
topics

1. Review

2. Defining recursion in the
context of fractals

3. The Cantor Set

4. The Sierpinski Carpet

5. Revisiting the Towers of
Hanoi

Review

recursion
A problem-solving technique in which tasks are

completed by reducing them into repeated, smaller
tasks of the same form.

Definition

Recursion Review

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

○ A recursive operation (function) is defined in terms of itself (i.e. it calls itself).

Recursion Review

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.
○ Base case: Simplest form of the problem that has a direct answer.
○ Recursive case: The step where you break the problem into a smaller, self-similar task.

Recursion Review

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.
○ The base case will define the “base” of the solution you’re building up.
○ Each previous recursive call contributes a little bit to the final solution.
○ The initial call to your recursive function is what will return the completely constructed answer.

Recursion Review

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.

● When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Recursion Review

● Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

● Recursion has two main parts: the base case and the recursive case.

● The solution will get built up as you come back up the call stack.

● When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Example:
isPalindrome()

Write a function that returns if a string is a palindrome

A string is a palindrome if it reads the same both forwards and backwards:

● isPalindrome(“level”) → true
● isPalindrome(“racecar”) → true
● isPalindrome(“step on no pets”) → true
● isPalindrome(“high”) → false
● isPalindrome(“hi”) → false
● isPalindrome(“palindrome”) → false
● isPalindrome(“X”) → true
● isPalindrome(“”) → true

Approaching recursive problems

● Look for self-similarity.

● Try out an example and look for patterns.
○ Work through a simple example and then increase the complexity.
○ Think about what information needs to be “stored” at each step in the

recursive case (like the current value of n in each factorial stack frame).

● Ask yourself:
○ What is the base case? (What is the simplest case?)
○ What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:
What are the base and
recursive cases?
(breakout rooms)

isPalindrome()

● Look for self-similarity: racecar

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’
○ Check if “aceca” is a palindrome:

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’
○ Check if “aceca” is a palindrome:

■ Look at the first and last letters of “aceca” → both are ‘a’
■ Check if “cec” is a palindrome:

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’
○ Check if “aceca” is a palindrome:

■ Look at the first and last letters of “aceca” → both are ‘a’
■ Check if “cec” is a palindrome:

● Look at the first and last letters of “cec” → both are ‘c’
● Check if “e” is a palindrome:

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’
○ Check if “aceca” is a palindrome:

■ Look at the first and last letters of “aceca” → both are ‘a’
■ Check if “cec” is a palindrome:

● Look at the first and last letters of “cec” → both are ‘c’
● Check if “e” is a palindrome:

○ Base case: “e” is a palindrome

isPalindrome()

● Look for self-similarity: racecar
○ Look at the first and last letters of “racecar” → both are ‘r’
○ Check if “aceca” is a palindrome:

■ Look at the first and last letters of “aceca” → both are ‘a’
■ Check if “cec” is a palindrome:

● Look at the first and last letters of “cec” → both are ‘c’
● Check if “e” is a palindrome:

○ Base case: “e” is a palindrome

What about the false case?

isPalindrome()

● Look for self-similarity: high

isPalindrome()

● Look for self-similarity: high
○ Look at the first and last letters of “high” → both are ‘h’

isPalindrome()

● Look for self-similarity: high
○ Look at the first and last letters of “high” → both are ‘h’
○ Check if “ig” is a palindrome:

isPalindrome()

● Look for self-similarity: high
○ Look at the first and last letters of “high” → both are ‘h’
○ Check if “ig” is a palindrome:

■ Look at the first and last letters of “ig” → not equal
■ Base case: Return false

isPalindrome()

● Base cases:
○ isPalindrome(“”) → true
○ isPalindrome(string of length 1) → true
○ If the first and last letters are not equal → false

● Recursive case: If the first and last letters are equal,
isPalindrome(string) = isPalindrome(string minus first and last letters)

isPalindrome()

● Base cases:
○ isPalindrome(“”) → true
○ isPalindrome(string of length 1) → true
○ If the first and last letters are not equal → false

● Recursive case: If the first and last letters are equal,
isPalindrome(string) = isPalindrome(string minus first and last letters)

There can be multiple base
(or recursive) cases!

isPalindrome()

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

st
rin

g
st

rin
g

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“cec”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“cec”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“cec”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“e”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“cec”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“e”

st
rin

g

s

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“cec”

st
rin

g

s

true

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s
bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“aceca”

st
rin

g

s

true

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

bool isPalindrome (string s) {
 if (s.length() < 2) {
 return true;
 } else {

if (s[0] != s[s.length() - 1]) {
return false;

}
 return isPalindrome(s.substr(1, s.length() - 2));
 }
}

“racecar”

st
rin

g

s

true

isPalindrome() in action

int main() {
 cout << boolalpha <<

isPalindrome(“racecar”)
<< noboolalpha << endl;

 return 0;
}

Prints true!

How can we use visual
representations to understand

recursion?

Self-Similarity

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Self-similarity shows up in many real-world
objects and phenomena, and is the key to
truly understanding their formation and
existence.

Graphical
Representations of
Recursion

Graphical Representations of Recursion

● Our first exposure to recursion
yesterday was graphical in nature!

○ "Vee" is a recursive program that traces
the path of a sprite in Scratch

○ The sprite draws out a funky tree-like
structure as it goes along its merry way

Graphical Representations of Recursion

● Our first exposure to recursion
yesterday was graphical in nature!

○ "Vee" is a recursive program that traces
the path of a sprite in Scratch

○ The sprite draws out a funky tree-like
structure as it goes along its merry way

● Graphical representations of
recursion allow us to visualize the
result of having multiple recursive
calls

○ Understanding this "branching" of the
tree is critical to solving challenging
problems with recursion

Fractals

Fractals

● A fractal is any repeated, graphical pattern.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

Understanding Fractal
Structure

What differentiates the smaller tree from
the bigger one?

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-0 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-1 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-2 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-4 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-11 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

In Summary

In Summary

We drew this tree
recursively.

In Summary

Each recursive call just draws
one branch. The sum total of all
the recursive calls draws the
whole tree.

An Awesome Website!

http://recursivedrawing.com/

http://recursivedrawing.com/

Announcements

Announcements

● Assignment 1 grades and commented feedback will be released on Paperless
by the end of the day today.

● Assignment 2 is due tomorrow at 11:59pm PDT.

● Assignment 3 will be released by the end of the day on Thursday.

● Make sure to check out our weekly announcement posts on Ed – there's lot of
important info contained there!

● Please send us your OAE accommodation letters if you haven't already!

How can we use recursion to
make art?

C++ Stanford
graphics library

Graphics in CS106B

● Creating graphical programs is not one of our main focuses in this class, but a
brief crash course in working with graphical programs is necessary to be able
to code up some fractals of our own.

● The Stanford C++ libraries provide extensive capabilities to create custom
graphical programs. The full documentation of these capabilities can be found
in the official documentation.

● We will abstract away almost all of the complexity for you via provided helper
functions.

○ There are two main classes/components of the library you need to know: GWindow and GPoint

https://web.stanford.edu/dept/cs_edu/cppdoc/

GWindow

● A GWindow is an abstraction for the
graphical window upon which we
will do all of our drawing.

GWindow

● A GWindow is an abstraction for the
graphical window upon which we
will do all of our drawing.

● The window defines a coordinate
system of x-y values

○ The top left corner is (0, 0)
○ The bottom right corner is

(windowWidth, windowHeight)

(0,0)

increasing x

in
cr

ea
si

ng
 y

GWindow

● A GWindow is an abstraction for the
graphical window upon which we
will do all of our drawing.

● The window defines a coordinate
system of x-y values

○ The top left corner is (0, 0)
○ The bottom right corner is

(windowWidth, windowHeight)

● All lines and shapes drawn on the
window are defined by their (x,y)
coordinates

(0,0)

increasing x

in
cr

ea
si

ng
 y

(200,100)

(400,250)

GPoint (0,0)

increasing x

in
cr

ea
si

ng
 y

GPoint (x,y)

● A GPoint is a handy way to bundle up
the x-y coordinates for a specific point
in the window.

○ Very similar in functionality to the
GridLocation struct we learned about
before!

GPoint

● A GPoint is a handy way to bundle up
the x-y coordinates for a specific point
in the window.

○ Very similar in functionality to the
GridLocation struct we learned about
before!

GPoint topLeft(200, 100);
GPoint bottomRight(400, 250);
drawFilledRect(topLeft, bottomRight);

GPoint midpoint = {
(topLeft.getX() + bottomRight.getX())/ 2,
(topLeft.getY() + bottomRight.getY())/ 2
};

(0,0)

increasing x

in
cr

ea
si

ng
 y

(200,100)

(400,250)

midpoint

Cantor Set example

Cantor Set

● The first fractal we will code is called the "Cantor" fractal, named after the
late-19th century German mathematician Georg Cantor.

● The Cantor fractal is a set of lines where there is one main line, and below that
there are two other lines: each ⅓ of the width of the original line, with one on
the left and one on the right (with a ⅓ separation of whitespace between them)

● Below each of the other lines is an identical situation: two ⅓ lines.

● This repeats until the lines are no longer visible.

An order-0 Cantor Set

An order-1 Cantor Set

An order-2 Cantor Set

An order-6 Cantor Set

An order-6 Cantor Set

Another Cantor Set

An order-6 Cantor Set

Another Cantor Set Also a Cantor Set

How to draw an order-n Cantor Set

GPoint start GPoint end

How to draw an order-n Cantor Set

GPoint start GPoint end

1. Draw a line from start to end.

How to draw an order-n Cantor Set

GPoint start GPoint end

1. Draw a line from start to end.

2. Underneath the left
third, draw a Cantor
Set of order-(n - 1).

How to draw an order-n Cantor Set

GPoint start GPoint end

1. Draw a line from start to end.

2. Underneath the left
third, draw a Cantor
Set of order-(n - 1).

3. Underneath the right
third, draw a Cantor
Set of order-(n - 1).

How to draw an order-n Cantor Set

GPoint start GPoint end

1. Draw a line from start to end.

2. Underneath the left
third, draw a Cantor
Set of order-(n - 1).

3. Underneath the right
third, draw a Cantor
Set of order-(n - 1).

Base case:
order == 0

Cantor Set demo
[Qt Creator]

Real-world application of the Cantor Set

Sierpinski Carpet
example

Sierpinski Carpet

● First described by Wacław
Sierpiński in 1916

● A generalization of the Cantor Set
to two dimensions!

● Defined by the subdivision of a
shape (a square in this case) into
smaller copies of itself.

○ The same pattern applied to a triangle
yields a Sierpinski triangle, which you
will code up on the next assignment.

An order-0 Sierpinski Carpet

An order-1 Sierpinski Carpet

An order-1 carpet is
subdivided into
eight order-0
carpets arranged in
this grid pattern

An order-2 Sierpinski Carpet

???

Practice and Discuss:
Draw the order-2 Sierpinski
carpet. What are the base and
recursive cases that define this
fractal?
(breakout rooms)

An order-2 Sierpinski Carpet

An order-2 Sierpinski Carpet

Sierpinski Carpet Formalized

● Base Case (order-0)
○ Draw a filled square at the

appropriate location

Sierpinski Carpet Formalized

● Base Case (order-0)
○ Draw a filled square at the

appropriate location

● Recursive Case (order-n, n ≠ 0)
○ Draw 8 order n-1 Sierpinski

carpets, arranged in a 3x3 grid,
omitting the center location

Sierpinski Carpet Formalized

● Base Case (order-0)
○ Draw a filled square at the

appropriate location

● Recursive Case (order-n, n ≠ 0)
○ Draw 8 order n-1 Sierpinski

carpets, arranged in a 3x3 grid,
omitting the center location

(0,0) (0,1) (0,2)

(1,0) (1,2)

(2,0) (2,1) (2,2)

Sierpinski Carpet Formalized

● Base Case (order-0)
○ Draw a filled square at the

appropriate location

● Recursive Case (order-n, n ≠ 0)
○ Draw 8 order n-1 Sierpinski

carpets, arranged in a 3x3 grid,
omitting the center location
■ i.e. Draw an n-1 fractal at

(0,0), draw an n-1 fractal at
(0,1), draw an n-1 fractal at
(0,2)...

(0,0) (0,1) (0,2)

(1,0) (1,2)

(2,0) (2,1) (2,2)

Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):
if (order == 0)

drawFilledSquare(x, y, BASE_SIZE)
else

drawSierpinskiCarpet(newX(x, y, 0, 0), newY(x, y, 0, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 0, 1), newY(x, y, 0, 1), order -1)
drawSierpinskiCarpet(newX(x, y, 0, 2), newY(x, y, 0, 2), order -1)
drawSierpinskiCarpet(newX(x, y, 1, 0), newY(x, y, 1, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 1, 2), newY(x, y, 1, 2), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 0), newY(x, y, 2, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 1), newY(x, y, 2, 1), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 2), newY(x, y, 2, 2), order -1)

Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):
if (order == 0)

drawFilledSquare(x, y, size, size);
else

drawSierpinskiCarpet(newX(x, y, 0, 0), newY(x, y, 0, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 0, 1), newY(x, y, 0, 1), order -1)
drawSierpinskiCarpet(newX(x, y, 0, 2), newY(x, y, 0, 2), order -1)
drawSierpinskiCarpet(newX(x, y, 1, 0), newY(x, y, 1, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 1, 2), newY(x, y, 1, 2), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 0), newY(x, y, 2, 0), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 1), newY(x, y, 2, 1), order -1)
drawSierpinskiCarpet(newX(x, y, 2, 2), newY(x, y, 2, 2), order -1)

This isn't very
pretty, can we do
better?

Sierpinski Carpet Pseudocode (Take 2)

drawSierpinskiCarpet (x, y, order):
if (order == 0)

drawFilledSquare(x, y, BASE_SIZE)
else

for row = 0 to row = 2:
for col = 0 to col = 2:

if (col != 1 || row != 1):
x_i = newX(x, y, row, col)
y_i = newY(x ,y, row, col)
drawSierpinskiCarpet(x_i, y_i, order - 1)

Iteration + Recursion

● It’s completely reasonable to mix iteration and recursion in the same function.

● Here, we’re firing off eight recursive calls, and the easiest way to do that is with
a double for loop.

● Recursion doesn’t mean “the absence of iteration.” It just means “solving a
problem by solving smaller copies of that same problem.”

● Iteration and recursion can be very powerful in combination!

Revisiting the Towers
of Hanoi
[Recursive Part 2: Electric Boogaloo]

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Homework before tomorrow’s lecture

● Play Towers of Hanoi:
https://www.mathsisfun.com/games/towerofhanoi.html

● Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

● Extra challenge (optional): How would you define this problem
recursively?
○ Don’t worry about data structures here. Assume we have a function moveDisk(X, Y)

that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Advanced Recursion Examples

