Graphs and Graph
Algorithms

What was your favorite part about working on your
final project?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
Diagnostic
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we represent and

TOday’S organize complex systems
question of interconnected

components?

Motivation for Graphs

Today'’s

. Graph Definition and
topics

Terminology

Graph Algorithms (BFS,
Dijkstra and AY)

Week 8 overview

Week 8

® Thereis no section this week!

e Today and Tomorrow: Lectures on "fun" topics to prepare you for the real world

o Today: Graphs and Graph Algorithms
o Tomorrow: Multithreading and Parallel Computing (Trip)

e Wednesday: Class Wrap-up and "Life after CS106B" Lecture
o We'll be having an "Ask Us Anything" component.

e Thursday: No class! Use the time to prep final project presentations.

e Thursday-Sunday: Final project presentations. Make sure to sign up for a slot!

https://docs.google.com/forms/d/e/1FAIpQLSctBqo9I_FxkWjZEaOMSh2RCWLF5C8ty3Gbm2u9Xz-TDsO0ZQ/viewform

Lecture Tomorrow

e Trip will be guest lecturing on a topic near and dear to his heart tomorrow
(multithreading and parallel computing). It should be an awesome lecture!

e Unfortunately, due to university restrictions, we cannot have minors (< 18 years
old) join the Zoom meeting for tomorrow's lecture.

e However, we still want you all to be able to watch and participate live!

@)

(@)

We will be live-streaming the lecture on YouTube Live.

There will be a pinned Ed post that can be used to ask live questions that Kylie/Nick will
moderate and deliver to Trip.

Links and more information will be posted tomorrow morning.
As always, the lecture will also be recorded for later viewing.

How can we represent and
organize complex systems of
interconnected components?

Graphs

Social Networks

facebook

Chemical Bonds

-

The Interstate Highway System

Whaehock Gots fmenon
[} B} 5]
Blane 1) ®
(SweetGas Pk o)
Beinghar Heers Gandeds
)5t te. Marieow
Bensug) Spotane Missoda Butte EBsmark fargo
Seatte) Sault te. Marie w5)
T i
llings @ Green By 3]
The Dalles. Buffalowr Rapid Gty
Pontand @) o Rl
Hemiston 3
Soem 9
figene
Q QPoctetoD
el ‘ - oy
. T
ogéen ()
Reno [Beyenne, BigSpiogs (3
sttty | o
e
y "
o,
Scten Welby
San Frandscol 00 .l
(e FormD) GO
oot pigs
i Pueo
Lasvegs
swfe
foga(1 Gap Aboergue
e [
(Santa Monica) Q)P O-.
Ot Phosax 1]
Yo \ Guang ()
0, o)
(Do BB JoomiD
Bon¥odoEl) @ Y O oo
o W

(e & (MomiE)

S Cunplain [

S onatoelaatels) ol o) S

0 0 0
gite, | Dety L 1)

) Q)

O Wellesley iand (1)

Yewmn

(Fouton

(o ok

Flowcharts

oA —
- HONTHIS PASS
THROW AWAY
REMAINING
[BUY INGREDIENTS| INGREDIENTS
AS THEY GO BAD
7
WEEKS PASS
| THROW ALY,
| LEFTOVERS
DAYS PASS
ORDER PIZTA
IT TASTE
GOOD? HOURS PASS
IN FRIDGE.

The Internet!

™

ILLINOIS

cA aﬁ
CARNEG! '

BURROUGHS

MITRE

The Internet!

What is a graph?

graph
A structured way to represent
relationships between different entities.

Our first graph!

e A structured way to represent relationships between different entities.

Our first graph!

e A structured way to represent relationships between different entities.

4

Our first graph!

e A structured way to represent relationships between different entities.

4

A graph
consists of a
set of
connected by

Our first graph!

A structured way to represent relationships between different

Nodes

A graph
consists of a
set of
connected by

Our first graph!

e A structured way to represent between different entities.

I A graph
consists of a

<——— Edges (— set of

A
\/ \ conne.cted by

Graph Terminology

Graph Terminology

e There are lots of different terms used when talking about graphs and their
properties. Let's explore some of them!

Graph Terminology

@
@

Two nodes are

if
they are
directly
connected by
an edge.

Graph Terminology

e

A between two
nodes is defined be
a sequence of
edges that can be
followed to traverse
between the two
nodes.

Graph Terminology

S

The of a path
is the number of
edges that make up
the path. This path
has length 2.

Graph Terminology

is a path that
beglns and ends at
the same node.

Graph Terminology

e
N

Graph Terminology

—@
@

Are we allowed to
have edges that
look like this?

Graph Terminology

4

‘ A is an edge

directly from a node
back to itself. Some
graphs allow loops
and some graphs
don't!

Graph Terminology

4

A node is

from another node if
a path exists between
the two nodes.

Graph Terminology

4

A graphis

if all nodes are
reachable from all
other nodes. This
graph is connected!

Graph Terminology

A graphis

if all nodes are
reachable from all
other nodes. This
graph is not
connected!

Graph Terminology

®

A graphis

if every node has an
edge connecting it to
every other node!

Graph Terminology Summary

e Graph structures

o Two nodes are if they are directly connected by an edge.

o A between two nodes is a sequence of edges connecting them. The of
a path is defined by the number of edges in the path.

o A is a path that starts and ends at the same node.

o A is an edge that connects a node to itself.

e Graph properties

o Anodeis from another node if a path between the two nodes in the
graph exists.
A graphiis if all nodes are reachable from all other nodes.

o Agraphis if edges exist between all pairs of nodes in the graph.

Types of graphs

Different types of graphs

e Some graphs are . These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:Ifollow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:Ifollow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:Ifollow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a
relationship in a directed
graph to go both ways
between two nodes, but it
would need to be explicitly
stated.

Different types of graphs

e Some graphs are . These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).

Different types of graphs

e Some graphs are . These represent situations where relationships

are bidirectional (the action/verb inherently applies to both entities).
o Ex:lam related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

e Some graphs are . These represent situations where relationships

are bidirectional (the action/verb inherently applies to both entities).
o Ex:lam related to my brother, and he is related to me. The relationship applies to both of us.

Different types of graphs

e Some graphs are . These represent situations where not all
relationships between entities are equal.

Different types of graphs

e Some graphs are . These represent situations where not all

relationships between entities are equal.
o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.

Different types of graphs

e Some graphs are . These represent situations where not all

relationships between entities are equal.
o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.

Different types of graphs

e Some graphs are . These represent situations where all
relationships between entities have equal importance.

Different types of graphs

e Some graphs are . These represent situations where all

relationships between entities have equal importance.
o Ex: All connected words in a word ladder are one letter apart from one another.

Types of Graphs Summary

e Directed: Unidirectional relationships between nodes, represented with a
pointed arrow.

e Undirected: Bidirectional relationships between nodes, represented with an
arrow-less line.

e Weighted: Each edge is assigned a numerical "weight" representing its relative
significance/strength.

e Unweighted: Each edge has equal significance, no labels assigned.

Revisiting Graph
Examples

Revisiting Graph Examples: Social Network

Properties

e Nodes: People

e Edges: "Friendship" or
"Following"

e Undirected (Facebook)
or Directed (Instagram)

facebook

e Unweighted

Revisiting Graph Examples: Chemical Bonds

Properties

e Nodes: Atoms

e Edges: Bonds
(covalent or ionic)

e Undirected

e Weighted

Revisiting Graph Examples: Interstate Highways

Properties

e Nodes: Cities

e FEdges:
Highways/roads

e Undirected

e Weighted

o e
5]]
— i |
) [
. . ot
et boen it
) QT T O e sasa . Sttt) s
(Sault S Marie wEE]
8 uo 20 e | i Jorin
[i 1| |
s R pI—
o et

)

S

g -
per Souncay
g
P eaned
o Oy Ly O B juon (000
O Q3= O
FI 2] QA

po— il

S

Snfandsa)

vefor ¢

L e

soue
o s ot
o,
maanall) +O" ik
GacsD [
oo EREY voa | GGED o
R 'Y o (WorthD)
’JWL Qureston s 3
()

Sl s

(adisonie

Q toreatnd @
GO)

(e)

(Haleah (B

(o

(Houton (3
ol st

Revisiting Graph Examples: Flowcharts

Properties

Nodes: Events/Actions

Edges: Transitions

Directed

Unweighted

I SHOULD

COOK MORE!

[BUY INGREDIENTS|

y
PUT SoME
IN A PAN

MONTHS PASS

IN FRIDGE

Revisiting Graph Examples: The Internet

Properties

e Nodes: Devices (phones,
computers, etc.)

e Edges: Connection pathways
(Bluetooth, WiFi, Ethernet, cables)

e Undirected

e Can be weighted or unweighted

Graphs as Linked Data
Structures

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e \What differentiates each of these linked data structures?

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e \What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e \What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.

o Trees: Nodes can connect to multiple other nodes, no cycles, parent/child
relationship and a single, special root node.

Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.
o Trees: Nodes can connect to multiple other nodes, no cycles, parent/child
relationship and a single, special root node.
o Graphs: No restrictions. It's the wild, wild west of the node-based world!

The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.

The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship

between nodes.

The Wild World of Graphs

e Graphs can have , and there is no notion of a parent-child relationship

between nodes.

The Wild World of Graphs

e Graphs have no nodes that are more important than other nodes. In particular,
there is no root node!

Graphe are the moct
abstraction that we can use to

. You will find graphs everywhere you look!

Representing Graphs

How do we store and represent graphs in code?

Take 1. Adjacency List

Take 1. Adjacency List

e We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Take 1. Adjacency List

e We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.

Map< , Set< >>

Take 1. Adjacency List

Set< >>

e We can represent a graph as a map Node |Adjacent to
from nodes to the collection of
nodes that each node is adjacent to.

Map< , Set< >>

Take 1. Adjacency List

Set< >>
e We can represent a graph as a map Node |Adjacent to

from nodes to the collection of
nodes that each node is adjacent to. Q Q ‘

Map< , Set< >>

Take 1. Adjacency List

Set< >>
e We can represent a graph as a map Node |Adjacent to

from nodes to the collection of
nodes that each node is adjacent to. Q

Map< , Set< >>

Take 1. Adjacency List

Set< >>

e We can represent a graph as a map Node |Adjacent to
from nodes to the collection of
nodes that each node is adjacent to.

00000

Take 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of

different forms:
o Map<Node, Vector<Node>>
o HashMap<Node, HashSet<Node>>
o Map<Node, Set<Node>>
o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors

Take 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of

different forms:

o Map<Node, Vector<Node>>

o HashMap<Node, HashSet<Node>>

o Map<Node, Set<Node>>

o Vector<Node>» <- in this case, the Node struct holds collection of

its adjacent neighbors

e The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

Take 2: Adjacency Matrix

We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

Take 2: Adjacency Matrix

We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

Take 2: Adjacency Matrix

We can also use a two-dimensional
matrix to represent the relationships
in a graph.

00000

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.

Going forward, unless stated otherwise, assume
we’re using an representation.

Announcements

Announcements

e Assignment 6 is due on Wednesday, August 12 at 11:59pm PDT. This is a hard
deadline — there is no grace period, and no submissions will be accepted
after this time.

e Make sure to sign up for a final project presentation time slot on Paperless!
You should be expecting to present for 30 minutes, sometime between
Thursday and Sunday of this week.

e Remember that minors will be asked to access tomorrow's lecture in a slightly
modified format. More details will be posted on Ed by tomorrow morning.

Graph Algorithms

Graph Traversal

lterating over a Graph

e In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

lterating over a Graph

e In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

e |n atree, there are many traversal strategies:
o Pre-order traversal

o In-order traversal
o Post-order traversal

lterating over a Graph

e In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

e |n atree, there are many traversal strategies:
o Pre-order traversal
o In-order traversal
o Post-order traversal

e There are many ways to iterate over a graph, each of which have different

properties.
o First idea: Let's revisit breadth-first search!

Breadth-First Search

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

1

D—©0—©

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

1

Db—©0—©

Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

1 3

Db ©—©

Graph Breadth-First Search

e The BFS algorithm on graphs looks very similar to what we saw way back in
Week 2. The main difference is we just keep track of nodes rather than partial

paths.

bfs-from(node v) {
make a queue of nodes, initially seeded with v

e BFS Pseudocode

while (queue not empty) {
curr = dequeue from queue

®
"process" curr
for each node adjacent to curr {
° if that node hasn't yet been visited, enqueue it

}

https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/

Breadth-First Search Properties

e Breadth-First Search allows us to find the shortest path/distance between any
two nodes in an

e However, BFS doesn't do anything to incorporate edge weights when applied
to a weighted graph.

e Most real-world applications of finding the shortest path between two nodes in
a graph occur on weighted graphs.

e How can we improve BFS to take into account edge weights?

Dijkstra's Algorithm

The Problem

e Let'simplement Google Maps!

The Problem

e Let'simplement Google Maps!

Area

. e {80} Danville
: 0 SanJose, California Oakland i
. Tassajara
Drag to reorder | ' X San Francisco Alameda
¢ oan rrancisco, California SaniRamon
@PSY
@ Add destination Yl San L_ejndro Dublin
Daly City h < Livi
SouthSan Hayward Pleasanton
Leave now ~ OPTIONS . Frangisco
() . San Bguno
Pacifica (33) (62)
2 \ ;
A Public transport services may be impacted due ©) 7 Union City Sunol
to COVID-19. 238 i
680,
Fremont
‘69
> Send directions to your phone Don Edwards (880,
3 o El Granada San Francisco
Bay National
. Ha'fB % N wildlife...
/= viaUS-101N 54 min gl 2N N a A
N 54 min
Fastest route, the usual traffic 48.4 miles
L I % 1h 35min R S 48.4 miles
DETAILS Lobitos
. . S0
f vial-280Nand US-101 N 57 min San Gregorio | oo
52.8 miles
52.8 miles
v Pescadero (@)

B 10:13AM—11:48 AM 1h35min R O Google:

The Problem

e Let'simplement Google Maps!

e As we've previously discussed, a road network can be thought of as a

weighted graph between many different destination points.
o The graph weights are based on many factors including physical distance, traffic, historical data
about stop light patterns, etc.

The Problem

e Let'simplement Google Maps!

e As we've previously discussed, a road network can be thought of as a

weighted graph between many different destination points.
o The graph weights are based on many factors including physical distance, traffic, historical data
about stop light patterns, etc.

e We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.

The Problem

e Let'simplement Google Maps!

e As we've previously discussed, a road network can be thought of as a

weighted graph between many different destination points.
o The graph weights are based on many factors including physical distance, traffic, historical data
about stop light patterns, etc.

e We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.

e How can we doit?

The Idea

e Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

The Idea

e Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

e What data structure will be useful for this? A priority queue!

The Idea

e Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

e What data structure will be useful for this? A priority queue!
e The seed node (starting point) is enqueued with priority 0. Every subsequent

node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.

The Idea

e Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

e What data structure will be useful for this? A priority queue!

e The seed node (starting point) is enqueued with priority 0. Every subsequent
node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.

e The priority queue guarantees we will visit nodes in order of increasing
distance from the seed node.

Dijkstra's Algorithm Pseudocode

dijkstras-from(node v) {
Initialize an empty priority queue of nodes
Add v to the priority queue with priority 0

while (queue not empty) {
currPriority = peek priority of first element in queue
curr = dequeue from queue
"process” curr
for each node adjacent to curr {
if that node hasn't yet been visited, enqueue it with priority
equal to currPriority + edge weight between curr and node

if that node has been visited and is still in the priority queue,
update its priority to be currPriority + edge weight

Dijkstra's In Practice

70

Goal: Find the shortest path/distance from SJ to SF

Dijkstra's In Practice

70

higher priority lower priority

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

Dijkstra's In Practice

10 3
O
4

70

15 16

Dijkstra's In Practice

Dijkstra's In Practice

10

3
SF

E Dowe! e know the
15 70 chortest path from]

@ to SF has a total path
weight of 15.

—®

Dijkstra's In Practice

15

10 3
@
4

E How would you

70 ctore information along

the way to be able o
reconctruct the path?

Dijkstra's Algorithm Properties

e Dijkstra's Algorithm allows us to find the shortest path/distance between any
two nodes in a

e Dijkstra's Algorithm forms the basis of many powerful real-world systems that
are built on top of graphs!

e However, one of the downsides to Dijkstra's algorithm is that it can, in many
circumstances, ignore that might prove useful to
finding the shortest path in the fewest number of steps.

e Can we find the solution while using less steps than with Dijkstra's Algorithm?

A" Search

A" Search

® Suppose we wanted to find the shortest
path from A to J in the graph to the right.

o Given no other information, we can do no
better than using Dijkstra's.

A" Search

® Suppose we wanted to find the shortest
path from A to J in the graph to the right.

o Given no other information, we can do no
better than using Dijkstra's.

e But, if we know that this graph represents
a map, we can start

A" Search

® Suppose we wanted to find the shortest
path from A to J in the graph to the right.

o Given no other information, we can do no
better than using Dijkstra's.

e But, if we know that this graph represents
a map, we can start

e Idea: If we our goal is to go north from A
to J, exploring paths to the south
probably doesn't make sense!

Heuristics

e We call the idea of using external information about a graph a
o The heuristic estimates the cost of the cheapest path to the goal.
o ltis different for every problem and corresponds to some real-world information.

Heuristics

e We call the idea of using external information about a graph a

e A heuristic should always

o If it overestimates the distance, it could end up finding a solution that is not actually optimal
(though it will do so relatively fast).

Heuristics

e We call the idea of using external information about a graph a

e A heuristic should always

e \We use the heuristic as an
o Forthe case of maps, if the distance to the destination is closer, this will weight the nodes in

that direction to be preferable (i.e., they will actually have a smaller numerical priority value).
o In other words, priority(u) = weight(s, u) + heuristic(u, d), where s is the start, uis
the node we are considering, and d is the destination.

Heuristics

e We call the idea of using external information about a graph a
e A heuristic should always
e We use the heuristic as an

e Common heuristics for distance-based graphs include Manhattan distance,
as-the-crow-flies distance, and Chebyshev distance.

Graph Search Demo

https://qiao.github.io/PathFinding.js/visual/

Beyond Traversal

More Graph Algorithms

® There are out there.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:
o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:

o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Cost:
1+3+5+4+1+6+2=22

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:

o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

o Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

/,%\

B — N — N — ay—uen—ah N

___/_/
D

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

There are out there.

Some famous examples include:

(@)

@)

@)

BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

Traveling salesman: Given a map of cities and the distances between them, find the shortest
path that traverses all cities in the map.

https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:
o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.
o Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.
o Traveling salesman: Given a map of cities and the distances between them, find the shortest
path that traverses all cities in the map.

e Graphs can also be used in conjunction with machine learning algorithms to
accomplish cool things. Take CS224W to learn more!

https://en.wikipedia.org/wiki/Category:Graph_algorithms

Summary

Graphs Summary

e Graphs are the most powerful and flexible manner for organizing data in a
linked data structure, particular when expressing complex patterns and
relationships between different data entities.

e Graphs are composed of nodes connected by edges.
e Graphs can be directed, undirected, weighted, or unweighted.
e Graph algorithms can be used to find interesting properties of graphs. BFS,

Dijkstra's Algorithm, and A* Search are three ways to find the shortest path
between two nodes in a graph.

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS1068/

algorithmic recursive
testing analysis problem-solving

Multithreading and Parallel Computing

Process

Thread #1 Thread #2

3

including
Display;
DMIand
Misc: /0

Time

R Me»ory_Cn_t‘ro"II:e} 10 ;_‘.‘:%?-lm&:_g-

OVERCL OENERS WO

