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https://docs.google.com/forms/d/e/1FAIpQLSctBqo9I_FxkWjZEaOMSh2RCWLF5C8ty3Gbm2u9Xz-TDsO0ZQ/viewform
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Graphs are the most powerful, flexible, and 
expressive abstraction that we can use to model 
relationships between different distributed 
entities. You will find graphs everywhere you look!
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bfs-from(node v) {
    make a queue of nodes, initially seeded with v

    while (queue not empty) {
        curr = dequeue from queue
        "process" curr
        for each node adjacent to curr {
            if that node hasn't yet been visited, enqueue it
        }
    }
}

https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/
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dijkstras-from(node v) {
    Initialize an empty priority queue of nodes
    Add v to the priority queue with priority 0

    while (queue not empty) {
        currPriority = peek priority of first element in queue
        curr = dequeue from queue
        "process" curr
        for each node adjacent to curr {
            if that node hasn't yet been visited, enqueue it with priority
            equal to currPriority + edge weight between curr and node

            if that node has been visited and is still in the priority queue,
            update its priority to be currPriority + edge weight
        }
    }
}
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Done! We know the 
shortest path from SJ 
to SF has a total path 
weight of 15.
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Question: How would you 
store information along 
the way to be able to 
reconstruct the path?
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d
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https://qiao.github.io/PathFinding.js/visual/
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