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Week 8

® Thereis no section this week!

e Today and Tomorrow: Lectures on "fun" topics to prepare you for the real world

o Today: Graphs and Graph Algorithms
o  Tomorrow: Multithreading and Parallel Computing (Trip)

e Wednesday: Class Wrap-up and "Life after CS106B" Lecture
o  We'll be having an "Ask Us Anything" component.

e Thursday: No class! Use the time to prep final project presentations.

e Thursday-Sunday: Final project presentations. Make sure to sign up for a slot!


https://docs.google.com/forms/d/e/1FAIpQLSctBqo9I_FxkWjZEaOMSh2RCWLF5C8ty3Gbm2u9Xz-TDsO0ZQ/viewform

Lecture Tomorrow

e Trip will be guest lecturing on a topic near and dear to his heart tomorrow
(multithreading and parallel computing). It should be an awesome lecture!

e Unfortunately, due to university restrictions, we cannot have minors (< 18 years
old) join the Zoom meeting for tomorrow's lecture.

e However, we still want you all to be able to watch and participate live!

@)

(@)

We will be live-streaming the lecture on YouTube Live.

There will be a pinned Ed post that can be used to ask live questions that Kylie/Nick will
moderate and deliver to Trip.

Links and more information will be posted tomorrow morning.
As always, the lecture will also be recorded for later viewing.



How can we represent and
organize complex systems of
interconnected components?



Graphs



Social Networks
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The Interstate Highway System
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Flowcharts
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The Internet!




What is a graph?



graph
A structured way to represent
relationships between different entities.
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Our first graph!

e A structured way to represent between different entities.

I A graph
consists of a

<——— Edges (— set of

A
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Graph Terminology



Graph Terminology

e There are lots of different terms used when talking about graphs and their
properties. Let's explore some of them!




Graph Terminology
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Two nodes are

if
they are
directly
connected by
an edge.




Graph Terminology

e

A between two
nodes is defined be
a sequence of
edges that can be
followed to traverse
between the two
nodes.




Graph Terminology

S

The of a path
is the number of
edges that make up
the path. This path
has length 2.




Graph Terminology

is a path that
beglns and ends at
the same node.
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Graph Terminology
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Are we allowed to
have edges that
look like this?




Graph Terminology

4

‘ A is an edge

directly from a node
back to itself. Some
graphs allow loops
and some graphs
don't!




Graph Terminology

4

A node is

from another node if
a path exists between
the two nodes.




Graph Terminology

4

A graphis

if all nodes are
reachable from all
other nodes. This
graph is connected!




Graph Terminology

A graphis

if all nodes are
reachable from all
other nodes. This
graph is not
connected!




Graph Terminology

®

A graphis

if every node has an
edge connecting it to
every other node!




Graph Terminology Summary

e Graph structures

o Two nodes are if they are directly connected by an edge.

o A between two nodes is a sequence of edges connecting them. The of
a path is defined by the number of edges in the path.

o A is a path that starts and ends at the same node.

o A is an edge that connects a node to itself.

e Graph properties

o Anodeis from another node if a path between the two nodes in the
graph exists.
A graphiis if all nodes are reachable from all other nodes.

o Agraphis if edges exist between all pairs of nodes in the graph.



Types of graphs



Different types of graphs

e Some graphs are . These represent situations where relationships are
unidirectional (an action/verb that explicitly implies only one direction).
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Different types of graphs

e Some graphs are . These represent situations where relationships are

unidirectional (an action/verb that explicitly implies only one direction).
o Ex:Ifollow Dwayne "The Rock" Johnson on Instagram, but he doesn't follow me back.

Note: It is possible for a
relationship in a directed
graph to go both ways
between two nodes, but it
would need to be explicitly
stated.




Different types of graphs

e Some graphs are . These represent situations where relationships
are bidirectional (the action/verb inherently applies to both entities).
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Different types of graphs

e Some graphs are . These represent situations where not all
relationships between entities are equal.
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o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.




Different types of graphs

e Some graphs are . These represent situations where not all

relationships between entities are equal.
o Ex: The different bonds between atoms in a single molecule all have different bond energies
and strengths.




Different types of graphs

e Some graphs are . These represent situations where all
relationships between entities have equal importance.




Different types of graphs

e Some graphs are . These represent situations where all

relationships between entities have equal importance.
o  Ex: All connected words in a word ladder are one letter apart from one another.




Types of Graphs Summary

e Directed: Unidirectional relationships between nodes, represented with a
pointed arrow.

e Undirected: Bidirectional relationships between nodes, represented with an
arrow-less line.

e Weighted: Each edge is assigned a numerical "weight" representing its relative
significance/strength.

e Unweighted: Each edge has equal significance, no labels assigned.



Revisiting Graph
Examples



Revisiting Graph Examples: Social Network

Properties

e Nodes: People

e Edges: "Friendship" or
"Following"

e Undirected (Facebook)
or Directed (Instagram)

facebook

e Unweighted



Revisiting Graph Examples: Chemical Bonds

Properties

e Nodes: Atoms

e Edges: Bonds
(covalent or ionic)

e Undirected

e Weighted



Revisiting Graph Examples: Interstate Highways

Properties

e Nodes: Cities

e FEdges:
Highways/roads

e Undirected

e Weighted
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Revisiting Graph Examples: Flowcharts

Properties

Nodes: Events/Actions

Edges: Transitions

Directed

Unweighted

I SHOULD

COOK MORE!

[BUY INGREDIENTS|

y
PUT SoME
IN A PAN

MONTHS PASS

IN FRIDGE




Revisiting Graph Examples: The Internet

Properties

e Nodes: Devices (phones,
computers, etc.)

e Edges: Connection pathways
(Bluetooth, WiFi, Ethernet, cables)

e Undirected

e Can be weighted or unweighted




Graphs as Linked Data
Structures



Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !
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relationship and a single, special root node.



Putting it All Together

e We've seen nodes connected by edges (links) before when discussing linked
lists and trees. These, along with graphs, are all !

e What differentiates each of these linked data structures?
o Linked lists: Linear structure, each node connected to at most one other
node.
o Trees: Nodes can connect to multiple other nodes, no cycles, parent/child
relationship and a single, special root node.
o Graphs: No restrictions. It's the wild, wild west of the node-based world!



The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship
between nodes.




The Wild World of Graphs

e Graphs can have cycles, and there is no notion of a parent-child relationship

between nodes.




The Wild World of Graphs

e Graphs can have , and there is no notion of a parent-child relationship

between nodes.




The Wild World of Graphs

e Graphs have no nodes that are more important than other nodes. In particular,
there is no root node!




Graphe are the moct
abstraction that we can use to

. You will find graphs everywhere you look!




Representing Graphs

How do we store and represent graphs in code?



Take 1. Adjacency List




Take 1. Adjacency List

e We can represent a graph as a map
from nodes to the collection of
nodes that each node is adjacent to.
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nodes that each node is adjacent to.
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Take 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of

different forms:
o Map<Node, Vector<Node>>
o HashMap<Node, HashSet<Node>>
o Map<Node, Set<Node>>
o Vector<Node>» <- in this case, the Node struct holds collection of
its adjacent neighbors




Take 1. Adjacency List

e The approach we just saw is called an adjacency list in comes in a number of

different forms:

o Map<Node, Vector<Node>>

o HashMap<Node, HashSet<Node>>

o Map<Node, Set<Node>>

o Vector<Node>» <- in this case, the Node struct holds collection of

its adjacent neighbors

e The core idea is that we have some kind of mapping associating each node
with its outgoing edges (or neighboring nodes).



Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.
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Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.




Take 2: Adjacency Matrix

e We can also use a two-dimensional
matrix to represent the relationships
in a graph.




Going forward, unless stated otherwise, assume
we’re using an representation.




Announcements



Announcements

e Assignment 6 is due on Wednesday, August 12 at 11:59pm PDT. This is a hard
deadline — there is no grace period, and no submissions will be accepted
after this time.

e Make sure to sign up for a final project presentation time slot on Paperless!
You should be expecting to present for 30 minutes, sometime between
Thursday and Sunday of this week.

e Remember that minors will be asked to access tomorrow's lecture in a slightly
modified format. More details will be posted on Ed by tomorrow morning.



Graph Algorithms



Graph Traversal



lterating over a Graph

e In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!
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lterating over a Graph

e In a singly-linked list, there’s pretty much one way to iterate over the list: start
at the front and go forward!

e |n atree, there are many traversal strategies:
o Pre-order traversal
o In-order traversal
o Post-order traversal

e There are many ways to iterate over a graph, each of which have different

properties.
o First idea: Let's revisit breadth-first search!



Breadth-First Search



Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
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Revisiting Breadth-First Search

e Core Idea: Find everything one hop away from the start, then two hops away,
then three hops away, etc.
e Goal: Find the shortest path from Ato F.

1 3
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Graph Breadth-First Search

e The BFS algorithm on graphs looks very similar to what we saw way back in
Week 2. The main difference is we just keep track of nodes rather than partial

paths.

bfs-from(node v) {
make a queue of nodes, initially seeded with v

e BFS Pseudocode

while (queue not empty) {
curr = dequeue from queue

®
"process" curr
for each node adjacent to curr {
° if that node hasn't yet been visited, enqueue it

}


https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/

Breadth-First Search Properties

e Breadth-First Search allows us to find the shortest path/distance between any
two nodes in an

e However, BFS doesn't do anything to incorporate edge weights when applied
to a weighted graph.

e Most real-world applications of finding the shortest path between two nodes in
a graph occur on weighted graphs.

e How can we improve BFS to take into account edge weights?



Dijkstra's Algorithm



The Problem

e Let'simplement Google Maps!
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The Problem

e Let'simplement Google Maps!

e As we've previously discussed, a road network can be thought of as a

weighted graph between many different destination points.
o The graph weights are based on many factors including physical distance, traffic, historical data
about stop light patterns, etc.
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o The graph weights are based on many factors including physical distance, traffic, historical data
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e We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.



The Problem

e Let'simplement Google Maps!

e As we've previously discussed, a road network can be thought of as a

weighted graph between many different destination points.
o The graph weights are based on many factors including physical distance, traffic, historical data
about stop light patterns, etc.

e We want to prioritize finding the quickest route between our starting point and
our destination point, on this weighted graph.

e How can we doit?



The Idea
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order them by the sum of the weights on the shortest path to that node.
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node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.



The Idea

e Rather than simply organizing the nodes in the order in which we visit them,
order them by the sum of the weights on the shortest path to that node.

e What data structure will be useful for this? A priority queue!

e The seed node (starting point) is enqueued with priority 0. Every subsequent
node is enqueued with priority equal to the current node's priority + the weight
of the edge being traversed.

e The priority queue guarantees we will visit nodes in order of increasing
distance from the seed node.



Dijkstra's Algorithm Pseudocode

dijkstras-from(node v) {
Initialize an empty priority queue of nodes
Add v to the priority queue with priority 0

while (queue not empty) {
currPriority = peek priority of first element in queue
curr = dequeue from queue
"process” curr
for each node adjacent to curr {
if that node hasn't yet been visited, enqueue it with priority
equal to currPriority + edge weight between curr and node

if that node has been visited and is still in the priority queue,
update its priority to be currPriority + edge weight



Dijkstra's In Practice

70

Goal: Find the shortest path/distance from SJ to SF
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Dijkstra's Algorithm Properties

e Dijkstra's Algorithm allows us to find the shortest path/distance between any
two nodes in a

e Dijkstra's Algorithm forms the basis of many powerful real-world systems that
are built on top of graphs!

e However, one of the downsides to Dijkstra's algorithm is that it can, in many
circumstances, ignore that might prove useful to
finding the shortest path in the fewest number of steps.

e Can we find the solution while using less steps than with Dijkstra's Algorithm?



A" Search



A" Search

® Suppose we wanted to find the shortest
path from A to J in the graph to the right.

o  Given no other information, we can do no
better than using Dijkstra's.
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A" Search

® Suppose we wanted to find the shortest
path from A to J in the graph to the right.

o  Given no other information, we can do no
better than using Dijkstra's.

e But, if we know that this graph represents
a map, we can start

e Idea: If we our goal is to go north from A
to J, exploring paths to the south
probably doesn't make sense!




Heuristics

e We call the idea of using external information about a graph a
o  The heuristic estimates the cost of the cheapest path to the goal.
o ltis different for every problem and corresponds to some real-world information.




Heuristics

e We call the idea of using external information about a graph a

e A heuristic should always

o If it overestimates the distance, it could end up finding a solution that is not actually optimal
(though it will do so relatively fast).




Heuristics

e We call the idea of using external information about a graph a

e A heuristic should always

e \We use the heuristic as an
o Forthe case of maps, if the distance to the destination is closer, this will weight the nodes in

that direction to be preferable (i.e., they will actually have a smaller numerical priority value).
o In other words, priority(u) = weight(s, u) + heuristic(u, d), where s is the start, uis
the node we are considering, and d is the destination.



Heuristics

e We call the idea of using external information about a graph a
e A heuristic should always
e We use the heuristic as an

e Common heuristics for distance-based graphs include Manhattan distance,
as-the-crow-flies distance, and Chebyshev distance.



Graph Search Demo


https://qiao.github.io/PathFinding.js/visual/

Beyond Traversal



More Graph Algorithms

® There are out there.
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More Graph Algorithms

® There are out there.

® Some famous examples include:

o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Cost:
1+3+5+4+1+6+2=22



https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

® There are out there.

® Some famous examples include:

o BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.

o Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

o Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.
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https://en.wikipedia.org/wiki/Category:Graph_algorithms

More Graph Algorithms

There are out there.

Some famous examples include:

(@)

@)

@)

BFS, Dijkstra's algorithm, and A* Search: Find the shortest path between two nodes in a graph.
Kruskal's Algorithm: Find a minimum spanning tree from a given graph.

Topological Sort: "Sort" the nodes in a dependency graph in such a way that traversing the
nodes in order results in all dependencies being fulfilled at each point in time.

Traveling salesman: Given a map of cities and the distances between them, find the shortest
path that traverses all cities in the map.
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e Graphs can also be used in conjunction with machine learning algorithms to
accomplish cool things. Take CS224W to learn more!
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Summary



Graphs Summary

e Graphs are the most powerful and flexible manner for organizing data in a
linked data structure, particular when expressing complex patterns and
relationships between different data entities.

e Graphs are composed of nodes connected by edges.
e Graphs can be directed, undirected, weighted, or unweighted.
e Graph algorithms can be used to find interesting properties of graphs. BFS,

Dijkstra's Algorithm, and A* Search are three ways to find the shortest path
between two nodes in a graph.
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Object-Oriented
Roadmap Programming

C++ basics
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dynamic memory
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Diagnostic

Life after CS1068/

algorithmic recursive
testing analysis problem-solving




Multithreading and Parallel Computing
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