

Life after CS106B!

Life after CS106B!

●

●
○
○

●
○

●

●

https://docs.google.com/forms/d/e/1FAIpQLSctBqo9I_FxkWjZEaOMSh2RCWLF5C8ty3Gbm2u9Xz-TDsO0ZQ/viewform

●

●

●
○
○

○
○

Definition

●

●

●

●

●

●

●
○
○

○
○

●
○

○
○

●

●

○

●

○

●

○

●

●

○

●

○

●

●

○

●

○

●

●

○

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
○

●

●
○

○

●

●
○

○

○

●

●

●

●

Graphs are the most powerful, flexible, and
expressive abstraction that we can use to model
relationships between different distributed
entities. You will find graphs everywhere you look!

●

●

●

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

●

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

●

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

●

Map<Node, Set<Node>>

Node Set<Node>>

Node Adjacent to

●

○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

●

○ Map<Node, Vector<Node>>

○ HashMap<Node, HashSet<Node>>

○ Map<Node, Set<Node>>

○ Vector<Node> <- in this case, the Node struct holds collection of

its adjacent neighbors

●

●

●

●

●

●

1

1

●

1

1

●

1

1

1

1

●

1

1

1

1

1

1

1

1

1

11

1

●

1

1

1

1

1

1

1

1

1

11

1

●

1

1

1

1

1

1

1

1

1

11

1

0

0

●

1

1

1

1

1

1

1

1

1

11

1

0

0

0

0

0

0

0 0

0 0

0

0 0

●

●

●

●

●

●
○
○
○

●

●
○
○
○

●

○

●

●

●

B

C

D

E

A

F

●

●

B

C

D

E

A

F

0

●

●

B

C

D

E

A

F

0

1

1

●

●

B

C

D

E

A

F

0

1

1

2

2

●

●

B

C

D

E

A

F

0

1

1

2

2

3

●

●

●

●

bfs-from(node v) {
 make a queue of nodes, initially seeded with v

 while (queue not empty) {
 curr = dequeue from queue
 "process" curr
 for each node adjacent to curr {
 if that node hasn't yet been visited, enqueue it
 }
 }
}

https://visualgo.net/en/dfsbfs
https://csacademy.com/lesson/breadth_first_search/

●

●

●

●

●

●

●

●

○

●

●

○

●

●

●

○

●

●

●

●

●

●

●

●

●

●

●

●

dijkstras-from(node v) {
 Initialize an empty priority queue of nodes
 Add v to the priority queue with priority 0

 while (queue not empty) {
 currPriority = peek priority of first element in queue
 curr = dequeue from queue
 "process" curr
 for each node adjacent to curr {
 if that node hasn't yet been visited, enqueue it with priority
 equal to currPriority + edge weight between curr and node

 if that node has been visited and is still in the priority queue,
 update its priority to be currPriority + edge weight
 }
 }
}

B

C

D

E

SJ

SF9

1
70

1

10

4

3

B

C

D

E

SJ

SF9

1

1

10

4

3

70

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

70

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0 70

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

B

9

70

B

C

D

E

SJ

SF9

1

1

10

4

3

SJ

0

B

9

C

1

70

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1

70

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1 70

B

C

D

E

SJ

SF9

1

1

10

4

3

B

9

C

1

E

71

70

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

C

1 70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2 70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

B

2

D

12

70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12

70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

71

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

16

B

C

D

E

SJ

SF9

1

1

10

4

3

D

12 70

E

16

SF

15

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Done! We know the
shortest path from SJ
to SF has a total path
weight of 15.

B

C

D

E

SJ

SF9

1

1

10

4

3

70

E

16

SF

15

Question: How would you
store information along
the way to be able to
reconstruct the path?

●

●

●

●

●
A J

○

●
A J

○

●

●
A J

○

●

●

●
○
○

●

●
○

●

●

●
○

○ priority(u) = weight(s, u) + heuristic(u, d) s u

d

●

●

●

●

https://qiao.github.io/PathFinding.js/visual/

●

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●
○

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●
○
○

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●
○
○
○

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●
○
○
○

○

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●
○
○
○

○

●

https://en.wikipedia.org/wiki/Category:Graph_algorithms

●

●

●

●

Life after CS106B!

