Hashing

What’s an example of compression being used that
you’ve seen when using technology?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS1068/

algorithmic recursive
testing analysis problem-solving

How does hashing apply to
)
TOday S a variety of computational

guestion

tasks and real-world
problems?

. What is a hash function?

Today'’s
topiCS . Hashing in ADTs

Real-world applications of
hashing (Hashzam!)

Review

[Huffman coding]

Why we use compression

e Storing data using the ASCII encoding is portable across systems, but
is not ideal in terms of space usage.

e Building custom codes for specific strings might let us save space.

e Idea: Use this approach to build a to reduce

the amount of space needed to store text.

o In particular, we are interested in algorithms that provide lossless compression.
o Compression algorithms identify patterns in data and take advantage of those
patterns to come up with more efficient representations of that data!

Taking advantage of redundancy

e Not all letters have the same character frequency
frequency in KIRK'S DIKDIK. K 4

e The frequencies of each letter I 3
are shown to the right. D)

e So far, we've given each letter a R 1
code of the same length. , 1

e Key Question: Can we give
shorter encodings to more S L
common characters? - 1

Prefix codes

character code

o A is an encoding K 10
system in which no code is a I 01
prefix of another code. D 111

e Here’s a sample prefix code for I? 001
the letters in KIRK'S DIKDIK. 000

S 1101
i 1100

Coding trees

e Main Insight: We can represent a prefix
coding scheme with a binary tree! This
special type of binary tree is called a

e A coding tree is valid if all the letters are
stored at the , with internal nodes just
doing the routing.

e Goal: Find the best coding tree for a string.

Huffman coding

e Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a for a given pattern of
letter frequencies.

e Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

e The Huffman coding algorithm is a flexible, powerful, adaptive algorithm for
data compression. And you will implement it on assignment 6!

Huffman coding pseudocode

e To generate the optimal encoding tree for a given piece of text:

o Build a that tallies the number of times each character appears in
the text.

o Initialize an empty that will hold partial trees (represented as
TreeNode¥*)

o Create . Add each new leaf

node to the priority queue. The weight of that leaf is the frequency of the character.
o While there are two or more trees in the priority queue:
m Dequeue the two trees with the smallest weight from the priority queue.
| whose weight is the sum of the
weights of the two trees.
m Add that tree back to the priority queue.

Try it yourself!
Build a Huffman tree

1) Build the frequency table

Input Text: MEMES !

1) Build the frequency table

Input Text: MEMES !

char frequency

2) Initialize the priority queue

higher priority lower priority
-

{

3) Add all unique characters as leaf nodes to queue

higher priority lower priority
<

{

char frequency

3) Add all unique characters as leaf nodes to queue

higher priority lower priority

char frequency

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority
<

{

2 2

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority
<

{

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority

4) Build the Huffman tree by joining adjacent nodes
2

higher priority lower priority

<

{

4) Build the Huffman tree by joining adjacent nodes
2

higher priority lower priority

<

{

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority

<

2 4
{ 951 ea1
1 1 2 2

>

}

character | code

M

1
10
01
00

character | code

M

1
10
01
00

Other valid trees are poccible!

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority
<

{

4) Build the Huffman tree by joining adjacent nodes

lower priority

higher priogy

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority
<

{ ()

2

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority

<

{

A second tree!

character | code

M

o)

1
101
100

More options!

character | code

M

10
o)
10
M

More options!

character | code

M

01
00
10
1

Huffman encoding summary

e Data compression is a very important real-world problem that relies on
patterns in data to find efficient, compact data representations schemes.

e In order to support variable-length encodings for data, we must use prefix
coding schemes. Prefix coding schemes can be modeled as binary trees.

e Huffman encoding uses a greedy algorithm to construct encodings by building
a tree from the bottom up, putting the most frequent characters higher up in
the coding tree.

e We need to send the encoding table with the compressed message.

What is hashing?

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o0 .size() - 0O(1) o0 .size() - 0O(1)
o .add() - 0O(1) o .peek () - O(1) o .isEmpty () - O(1)
o wv[i] - 0O(1) O .enqueue() - 0O(1) 0 .add() - O(log(n))
o .insert() - O(n) 0 .dequeue() - 0O0(1) 0 .remove() — O(log(n))
O .remove () — O(n) O .isEmpty () - O(1) 0 .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
0 traversal - O(n)
e Stacks e Maps

e Grids .size() - O(1) .size() - 0(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1) .push() - O(1) m[key] - O(log(n))

ogl[il[j] - O(1) .pop() - O(1) .contains () - O(log(n))
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

© O O O O

traversal - O(n)

o O O O O O

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o0 .size() - 0O(1) o0 .size() - 0O(1)
o .add() - 0O(1) o .peek () - O(1) o .isEmpty () - O(1)
o wv[i] - O(1) O .enqueue() - 0O(1) © .add() - O(log(n))
0 .insert() - O(n) 0 .dequeue() - 0O0(1) 0 .remove() - O(log(n))
o .remove() - O(n) O .isEmpty () - O(1) o .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
0 traversal - O(n)
e Stacks e Maps

e Grids .size() - O(1) .size() - 0(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1) .push() - O(1) m[key] - O(log(n))

.contains () - O(log(n))
traversal - O(n)

ocgl[i]l[3] - O(1) .pop() — O(1)
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

o O O O O O
o |0 O O O

ADT Big-O Matrix

e \ectors e Queues ® Sets
.size() - O(1) o .size() - 0O(1) o .size() - 0(1)
.add() - 0O(1) o .peek() - 0(1) O .isEmpty () - O(1)
v[i] - O(1) .enqueue () - 0(1)

o
o
o
O .insert
o
o
o

.remove
.clear (O(n)

travers

e Grids 7(1)
o .numRows () /.numCols () o .peek() - 0(1) O .isEmpty () - O(1)
- o(1) o .push() - O(1) o m[key] - O(log(n))
o glil[j] - O(1) o .pop() - 0(1) o .contains() - O(log(n))
O .inBounds () - O(1) O .isEmpty () - O(1) 0 traversal - O(n)
o traversal - O(n?) O traversal - O(n)

Can we get constant runtime? (0(1))

Can we get constant runtime? (0(1))

An idea...

Can we get constant runtime? (0(1))

An idea...

e Use an array implementation for the set, and when the user adds a value i to
your set, store it at index 1 in the array.

set.add(7);

set.addglg;

set.add(9); value 1 7 9
size 3 capacity 10

Can we get constant runtime? (0(1))

An idea...

e Use an array implementation for the set, and when the user adds a value i to
your set, store it at index 1 in the array.

e This would give us constant time lookup!

Can we get constant runtime? (0(1))

An idea...

e Use an array implementation for the set, and when the user adds a value i to
your set, store it at index 1 in the array.

e This would give us constant time lookup!

What are the problems with this approach...?

Can we get constant runtime? (0(1))

An idea...

e Use an array implementation for the set, and when the user adds a value i to
your set, store it at index 1 in the array.

e This would give us constant time lookup!

What are the problems with this approach...?

set.add(1000); value 1 71019

size 3 capacity 10

Can we get 0(1) runtime for lookup operations while
only using a fixed amount of space?

Hash functions

hash function
A function that takes in arbitrary inputs
and maps them to a fixed set of outputs.

Remember nameHash?

int nameHash(string first, string last){
static const int kLargePrime = 16908799;
static const int kSmallPrime = 127;
int hashval = 0;

/* Iterate across all the characters in the first name, then the last name */
for (char ch: first + last) {

ch = tolower(ch);

hashval = (kSmallPrime * hashVal + ch) % kLargePrime;

}

return hashVal;

This ic a hash function!
D

What is a hash function?

e Given an input of a particular type (e.g. string), returns a corresponding

(usually a number).
o The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

What is a hash function?

e Given an input of a particular type (e.g. string), returns a corresponding

(usually a number).
o The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

e Two important properties
1. If given the same input, the hash function must return the same output. (This is also
called a function.)

“Kylie J” —»[< j—» 13172495
hashFn

What is a hash function?

e Given an input of a particular type (e.g. string), returns a corresponding

(usually a number).
o The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

e Two important properties
1. If given the same input, the hash function must return the same output. (This is also

called a function.)
2. Two different inputs will (usually) produce different outputs, even if the inputs are

very similar.

—> 13172495
—> 127380

“Kylie J” 55
T N—

“Kylie Jue” —»

What is a hash function?

e Given an input of a particular type (e.g. string), returns a corresponding

(usually a number).
o The values returned by a hash function are called “hash values,” “hash codes,” or “hashes.”

e Two important properties
1. If given the same input, the hash function must return the same output. (This is also

called a function.)
2. Two different inputs will (usually) produce different outputs, even if the inputs are

very similar.

e Designing hash functions is beyond the scope of CS106B! But in the second
half of this lecture, we’ll discuss how to use them.

Announcements

Announcements

e Assignment 6 has been released and is due on Wednesday, August 12 at
11:59pm PDT. This is a hard deadline — there is no grace period, and no
submissions will be accepted after this time.

e Final project reports are due on Sunday, August 9 at 11:59pm PDT. You wiill
have the opportunity to schedule your final presentation time after submitting.
Reports should be submitted to Paperless, and time slot sign-ups will also
happen through Paperless.

Hashing and ADTs

ADT Big-O Matrix

e \ectors e Queues ® Sets
.size() - O(1) o .size() - 0O(1) o .size() - 0(1)
.add() - 0O(1) o .peek() - 0(1) O .isEmpty () - O(1)
v[i] - O(1) .enqueue () - 0(1)

o
o
o
O .insert
o
o
o

.remove
.clear (O(n)

travers

e Grids 7(1)
o .numRows () /.numCols () o .peek() - 0(1) O .isEmpty () - O(1)
- o(1) o .push() - O(1) o m[key] - O(log(n))
o glil[j] - O(1) o .pop() - 0(1) o .contains() - O(log(n))
O .inBounds () - O(1) O .isEmpty () - O(1) 0 traversal - O(n)
o traversal - O(n?) O traversal - O(n)

What is the interface for the user? Abstract Data

(Sets, Maps) Structures
How is our data organized? Data Organization
() Strategies

?
What stores our data* Fundamental C++

(arrays, linked lists) Data Storage

How is data represented electronically? {-
(RAM) Computer

Hardware

Levels of abstraction

Creating a hash table for data organization

Hach table <lides courtecy of Keith Schwarz

Creating a hash table for data organization

e Maintain a large number of small collections called (think drawers).
o Put together, the buckets form a hash table!

e Finda that lets us tell where each object should go (think knowing which
drawer is which).

e To find something, only look in the bucket assigned to it (think looking for
socks).

Creating a hash table for data organization

e Finda that lets us tell where each object should go (think knowing which
drawer is which).

Uce a hach function!

Buckets [0] [1] [2] [3] [4] [5]

calliope || |polyhymnia| | | euterpe clio melpomene

terpsichore erato thalia

set.add(| urania |)

Buckets [0] [1] [2] [3] [4] [5]

calliope || |polyhymnia| | | euterpe clio melpomene

terpsichore erato thalia

Our bucket rule;

bucket = hash(input) % numBuckets;

set.add(| urania |)

Buckets [0] [1] [2] [3] [4] [5]

calliope || |polyhymnia| | | euterpe clio melpomene

terpsichore erato thalia

Our bucket rule;

bucket = hash() % numBuckets;

set.add(| urania |)

Buckets [0] [1] [2] [3] [4] [5]

calliope || |polyhymnia| | | euterpe clio melpomene

terpsichore erato thalia

Our bucket rule;

bucket = hash(urania) % numBuckets;
12266 6 set.add(

urania |)

Buckets | [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

urania

Our bucket rule;

bucket = hash(input) % numBuckets;

Creating a hash table for data organization

e To find something, only look in the bucket assigned to it (think looking for
socks).

Creating a hash table for data organization

e To find something, only look in the bucket assigned to it (think looking for
socks).

We can vce the came rule for (sokup!

Buckets | [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

urania

Our bucket rule;

bucket = hash(input) % numBuckets;

Buckets | [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

urania

Our bucket rule;

bucket = hash() % numBuckets;

set.contains(urania)

Buckets | [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

urania

Our bucket rule;

bucket = hash() % numBuckets;

set.contains(urania)

Buckets [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia
urania
Our bucket rule: k Look in bucket 2 and traverce until you
find urania or run out of elemente.
bucket = hash() % numBuckets;

set.contains(urania)

Creating a hash table for data organization

e Maintain a large number of small collections called (think drawers).
o Put together, the buckets form a hash table!

e Finda that lets us tell where each object should go (think knowing which
drawer is which).

e To find something, only look in the bucket assigned to it (think looking for
socks).

How efficient is this?

e Each hash table operation:
o Chooses a bucket and jumps there
o Potentially scans everything in the bucket

e Claim: The efficiency of our hash table depends on how well-spread-out the
elements are.
o If we want O(1) lookup operations, we want our buckets to have a size of
™ element on average.

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly
evenly.

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly

evenly.
o Recall our two hash function properties:
1. If given the same input, the hash function must return the same output. (This is

also called a function.)
2. Two different inputs will (usually) produce different outputs, even if the inputs

are very similar.

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly

evenly.

o Recall our two hash function properties:
1. If given the same input, the hash function must return the same output. (This is

also called a function.)
2. Any given input value will give a “random” output = this creates a relatively

equal distribution across buckets.

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly
evenly.

e Imagine we have b buckets and n elements in our table.

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly
evenly.

e Imagine we have b buckets and n elements in our table.

e On average, how many elements will be in a bucket?

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly
evenly.

e Imagine we have b buckets and n elements in our table.

e On average, how many elements will be in a bucket?

n/

How efficient is this?

e |et’s suppose we have a “strong” hash function that distributes elements fairly
evenly.

e Imagine we have b buckets and n elements in our table.

e On average, how many elements will be in a bucket?
n /
e The expected cost of an insertion, deletion, or lookup is therefore:

0(1 + n / b)

Load factor

e Wecalla = n / bour

e Ifa getstoo big, the hash table will be too slow.

e If @ gets too low, the hash table will waste too much space.

Load factor

o Wecalla = n / bour
e Ifa getstoo big, the hash table will be too slow.
e If @ gets too low, the hash table will waste too much space.

e Idea: If @ gets too big, we need to resize our underlying buckets array and

rehash the values to new buckets in the larger array.
o We double our number of buckets when we hit a particular threshold for our load
factor. (We’ll use the threshold of @ >= 2))
o Very similar to resizing our priority queue!

A note about collisions...

e In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
o This gives us “collisions”!

A note about collisions...

e In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
o This gives us “collisions”!

o A occurs when two or more elements map to the same bucket.
Buckets | [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore

A note about collisions...

e In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
o This gives us “collisions”!

o A occurs when two or more elements map to the same bucket.

Buckets | [0] [1] [2] [3] [4] [5]

calliope || |polyhymnia| | | euterpe clio melpomene

Collicio n!

CN~—
D

terpsichore

A note about collisions...

e In reality, our hash function will not distribute inputted elements exactly evenly

across all buckets.
o This gives us “collisions”!

o A occurs when two or more elements map to the same bucket.

e To handle collisions, we use a strategy called , in which each bucket
stores a linked list of elements that point to one another.

Implementing a
HashSet

HashSet.h

class HashSet { struct HashNode {
public: int data;
HashSet(); HashNode* next;
~HashSet(); };
void add(int value);

void clear();
bool contains(int value) const;

private:
HashNode** elements; // an array of HashNode* (an array of pointers!)
int mysize;
int capacity;
int getIndexOf(int value) const;
void rehash();

}s

HashSet.cpp

#include "HashSet.h"

// Initialize our member variables in the constructor
HashSet: :HashSet() {
capacity = 10;
mysize = 0;
elements = new HashNode*[capacity](); // all are initialized to nullptr using ()

// Private helper for calculating the bucket of a given a value
int HashSet::getIndexOf(int value) const {
return hash(value) % capacity;

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
if (!contains(value)) {

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {

if (!contains(value)) {
int bucket = getIndexOf(value);

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
if (!contains(value)) {
int bucket = getIndexOf(value);
// insert at the front of the Llist in that bucket
elements[bucket] = new HashNode(value, elements[bucket]);

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
if (!contains(value)) {
int bucket = getIndexOf(value);
// insert at the front of the Llist in that bucket
elements[bucket] = new HashNode(value, elements[bucket]);

mysize++;

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
if (!contains(value)) {
int bucket = getIndexOf(value);
// insert at the front of the Llist in that bucket
elements[bucket] = new HashNode(value, elements[bucket]);

mysize++;

}
// We’ll add rehashing here Later...

HashSet.cpp

// Check if a value 1is inside our set
bool HashSet::contains(int value) const {

HashSet.cpp

// Check if a value 1is inside our set
bool HashSet::contains(int value) const {
HashNode* curr = elements[getIndexOf(value)];

HashSet.cpp

// Check if a value 1is inside our set

bool HashSet::contains(int value) const {
HashNode* curr = elements[getIndexOf(value)];
while (curr != nullptr) {

}

return false;

HashSet.cpp

// Check if a value 1is inside our set
bool HashSet::contains(int value) const {
HashNode* curr = elements[getIndexOf(value)];
while (curr != nullptr) {
if (curr->data == value) {
return true;

}

curr = curr->next;

}

return false;

HashSet.cpp

HashSet: :~HashSet() {
clear(); // Remove all elements

delete[] elements; // Also delete the array itself

// Remove all elements in our set so all buckets in our array are nullptr
void HashSet::clear() {

HashSet.cpp

HashSet: :~HashSet() {
clear(); // Remove all elements

delete[] elements; // Also delete the array itself

// Remove all elements in our set so all buckets in our array are nullptr

void HashSet::clear() {
for (int i = 9; i < capacity; i++) {
// free List 1in bucket 1

}

mysize = 0;

}

HashSet.cpp

HashSet: :~HashSet() {
clear(); // Remove all elements

delete[] elements; // Also delete the array itself

// Remove all elements in our set so all buckets in our array are nullptr
void HashSet::clear() {
for (int i = 0; i < capacity; i++) {
// free List 1in bucket 1
while (elements[i] != nullptr) {
HashNode* curListNode = elements[i];
elements[i] = elements[i]->next;
delete curListNode;

}

mysize = 0;

}

HashSet.cpp

void HashSet::rehash() {
HashNode** oldElements = elements;
int oldCapacity = capacity;
capacity *= 2;
elements = new HashNode*[capacity]();
for (int i = 0; i < oldCapacity; i++) {
HashNode* curr = oldElements[i];

while (curr != nullptr) { // 1terate over old bucket
HashNode* prev = curr;
curr = curr->next; // don’t lose access to rest of old bucket

int newBucket = getIndexOf(prev->data);
prev->next = elements[newBucket]; // put prev node at front of new bucket
elements[newBucket] = prev; // update new bucket pointer

}
delete[] oldElements;

}

HashSet.cpp

// Add a given value to our set
void HashSet::add(int value) {
if (!contains(value)) {
int bucket = getIndexOf(value);
// insert at the front of the Llist in that bucket
elements[bucket] = new HashNode(value, elements[bucket]);

mysize++;

}

if (mysize / capacity >= 2) {
rehash();

}

HashSet takeaways

e When implementing HashSets or HashMaps, we use an array to store pointers.
o Each bucket in the array stores a pointer to a linked list in case of collisions.
o To create a HashMap instead of a HashSet, your node struct would just include both a key and
a value (instead of just one field for data).

e Our hash function tells us what bucket in the array our elements should go in.

e Because we can just add new nodes to the front of the linked list at the bucket
indicated by its hash value, adding to a HashSet is 0(1).

e Functions that require lookup are also constant time (i.e. 0(1)) if the load
factor for our hash table is small!

Applications of Hashing

Hashing is used everywhere!

e [n addition to creating hash tables, hash functions themselves are used in a
variety of different applications.

e Applications hash your passwords before storing them to obscure the actual
contents.

e Hashing is used in cryptography for secure (encrypted) communication and

maintaining data integrity.
o For example, when you communicate over a WiFi network: Is this website secure? Is the this
document actually from the person it says it’s from? Did your message get tampered with
between when you sent it and when the recipient got it?

Hashzam!
(demo courtesy of Chris Piech)

How does it work?

e Attempt #1. Compare at all notes at every time stamp.

How does it work?

e Attempt #1. Compare at all notes at every time stamp.

e This would require storing all notes at every timestep, i.e. storing entire song
files!

O @ Shazam

How does it work?

e Instead, look at notes that appear close
to one another in time.

O ® Shazam

How does it work?

Time

e Instead, look at notes that appear close

to one another in time.

O @ Shazam

How does it work?
Time
e Instead, look at notes that appear close

to one another in time.

Al notes at a given /

Limestamp

(ctacked by pitch).

O @ Shazam

How does it work?

e Instead, look at notes that appear close
to one another in time.

O ® Shazam

How does it work?

e Instead, look at notes that appear close
to one another in time.

How does it work?

e Instead, look at notes that appear close to one another in time.

e Attempt #2: Store a frequency map of hashed values for each song.

o For all notes within a certain timestep of one another throughout a given song,
store the hash(noteA, noteB, timeDelta).

How does it work?

e Instead, look at notes that appear close to one another in time.

e Attempt #2: Store a frequency map of hashed values for each song.
o For all notes within a certain timestep of one another throughout a given song,

store the hash(noteA, noteB, timeDelta).
o This gives you a frequency map of the hashed values for the song (i.e. hash values

and their counts).

How does it work?

e Instead, look at notes that appear close to one another in time.

e Attempt #2: Store a frequency map of hashed values for each song.
o For all notes within a certain timestep of one another throughout a given song,
store the hash(noteA, noteB, timeDelta).
o This gives you a frequency map of the hashed values for the song (i.e. hash values
and their counts).
o Compare the song’s frequency map to stored maps to find the closest match.

How does it work?

e Instead, look at notes that appear close to one another in time.

e Attempt #2: Store a frequency map of hashed values for each song.
o For all notes within a certain timestep of one another throughout a given song,
store the hash(noteA, noteB, timeDelta).
o This gives you a frequency map of the hashed values for the song (i.e. hash values

and their counts).
o Compare the song’s frequency map to stored maps to find the closest match.

e You only have to store a database of frequency maps, which is more space
efficient and enables easier comparison between songs!

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS1068/

algorithmic recursive
testing analysis problem-solving

FUN!

