
Huffman Coding
Today's question has a visual component, posted

on the next slide.

If a binary tree wore pants, would it wear them like
in picture A or in picture B?

A B

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

real-world
algorithms

Today’s
questions

How can we use trees to
develop more compact and
efficient data
representation techniques?

Today’s
topics

1. Binary Search Tree Review

2. Data Compression and
Encoding

3. Huffman Coding

Review
[binary search trees]

Key Idea: The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structure and efficiently
manipulate data?

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?
(Sets, Maps, etc.)

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

A binary search tree is either...

an empty data
structure represented
by nullptr or...

x

<x >x

a single node,
whose left subtree is
a BST of smaller
values than x…

and whose right
subtree is a BST of
larger values than x.

14341 52 106

110

109

107

108

103 154

166

161

51

14341 52 106

110

109

107

108

103 154

166

161

51

There are n nodes in the tree, but
the path to each node is short

(~O(log n))!

14341 52 106

110

109

107

108

103 154

166

161

51

106 < 108
106 > 103
106 < 107

How could we check if 106 is in this
tree?

14341 52 106

110

109

107

108

103 154

166

161

51

How could we add 170 to this tree?

170 > 108
170 > 154
170 > 166

14341 52 106

110

109

107

108

103 154

166

161

51

How could we add 170 to this tree?

170 > 108
170 > 154
170 > 166

170

Binary Search Tree Properties

● There are multiple valid BSTs for the same set of data. How you construct the
tree/the order in which you add the elements to the tree matters!

● A binary search tree is balanced if its height is O(log n), where n is the number
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
○ An optimal (balanced) BST is built by repeatedly choosing the median element as

the root node of a given subtree and then separating elements into groups less than
and greater than that median.

○ Lookup, insertion, and deletion with balanced BSTs all operate in O(log n) runtime.
○ A self-balancing BST reshapes itself on insertions and deletions to stay balanced

(how to do this is beyond the scope of this class).

Implementing a Set with a BST

● Binary search trees are a great backing store for a data structure in which
lookup/additional/removal all needs to be fast and the order of elements
doesn't matter.

● This makes them a great choice for the internal data storage of a Set or Map
ADT!

● Thus, we are able to build our own version of the Set ADT by using a BST to
organize the internal structure of the data.

OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private
member functions/helpers!
○ In-order traversal prints our elements in the correctly sorted order!

● Using a BST allowed us to take advantage of recursion to traverse our data
and get an O(log n) runtime for our methods.

● Rewiring trees can be complicated!
○ Make sure to consider when nodes need to be passed by reference.
○ Check out the remove method after class if you’re interested in seeing an example

of tree rewiring (you won’t be required to do anything this complex with tree
rewiring).

How can we use trees to
develop more compact and
efficient data representation

techniques?

Le
ve

ls
 o

f a
bs

tr
ac

tio
n What is the interface for the user?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Le
ve

ls
 o

f a
bs

tr
ac

tio
n What is the interface for the user?

How is our data organized?
(binary heaps, BSTs, Huffman trees)

What stores our data?
(arrays, linked lists, trees)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Acknowledgement: Many of the following slides were
adapted from Keith Schwarz's Winter 2020 “Beyond
Data Structures" lecture. Thank you Keith for having
such great lecture examples!

Data Storage and
Representation

How do computers store and represent data?

How do computers store and represent data?

How do computers store and represent data?

Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.

Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.
○ These sequences are encoded in physical devices by magnetic orientation on small (10nm!)

metal particles or by trapping electrons in small gates. This is where the magic happens!

Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.
○ These sequences are encoded in physical devices by magnetic orientation on small (10nm!)

metal particles or by trapping electrons in small gates. This is where the magic happens!

● A single 0 or 1 is called a bit.

Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.
○ These sequences are encoded in physical devices by magnetic orientation on small (10nm!)

metal particles or by trapping electrons in small gates. This is where the magic happens!

● A single 0 or 1 is called a bit.

● A group of eight bits is called a byte.
00000000, 00000001, 00000010, …
00000011, 00000100, 00000101, …

Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.
○ These sequences are encoded in physical devices by magnetic orientation on small (10nm!)

metal particles or by trapping electrons in small gates. This is where the magic happens!

● A single 0 or 1 is called a bit.

● A group of eight bits is called a byte.
00000000, 00000001, 00000010, …
00000011, 00000100, 00000101, …

● There are 28 = 256 different bytes.
○ Good recursive backtracking practice: Write a function to list all possible byte sequences!

Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.
○ Binary can be used to encode numbers, text, images, etc.

Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.

● Similar to how we previously encountered hexadecimal (base-16) numbers,
binary numbers can be thought of as expressed in a base-2 system.
○ To produce a number in base 2, each digit represents a power of 2 (exactly

analogous to how in base 10 each digit represents a power of 10).

Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.

● Similar to how we previously encountered hexadecimal (base-16) numbers,
binary numbers can be thought of as expressed in a base-2 system.

● Representing my age in different numerical systems
○ Base 10: 22 = 2 * 101 + 2 * 100 = 20 + 2 = 22
○ Base 2: 10110 = 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 0 * 20 = 16 + 4 + 2 = 22

Representing Text

● We think of strings as being made of characters representing letters, numbers,
emojis, etc.

Representing Text

● We think of strings as being made of characters representing letters, numbers,
emojis, etc.

● However, we just said that computers require everything to be written as zeros
and ones.

Representing Text

● We think of strings as being made of characters representing letters, numbers,
emojis, etc.

● However, we just said that computers require everything to be written as zeros
and ones.

● To bridge the gap, we need to agree on some way of representing characters
as sequences of bits.

Representing Text

● We think of strings as being made of characters representing letters, numbers,
emojis, etc.

● However, we just said that computers require everything to be written as zeros
and ones.

● To bridge the gap, we need to agree on some way of representing characters
as sequences of bits.

● Idea: Assign each character a sequence of bits called a code.

ASCII

● Early (American) computers needed some standard way to send output to their
(physical!) printers.

● Since there were fewer than 256 different characters to print (1960’s America!),
each character was assigned a one-byte value.
○ This initial code was called ASCII. Surprisingly, it’s still around, though in a

modified form.

● For example, the letter A is represented by the byte 01000001 (whose
numerical representation is 65). You can still see this in C++:

cout << int('A') << endl; // Prints 65

ASCII Mystery: 010000100100000101000111

ASCII Mystery: 010000100100000101000111

● Here’s a small segment from the
ASCII encodings for characters.

ASCII Mystery: 010000100100000101000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: 010000100100000101000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B 0100000101000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B 0100000101000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B A 01000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B A 01000111

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B A G

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B A G

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

ASCII Mystery: B A G

● Here’s a small segment from the
ASCII encodings for characters.

● What is the mystery word in the title
of this slide?

● Thus, in the computer's eyes, "BAG"
is equivalent to the bit sequence
010000100100000101000111

An Observation

● In ASCII, every character has exactly the same number of bits in it.

● Any message with n characters will use up exactly 8n bits.
○ Space for CS106BLECTURE: 104 bits.
○ Space for COPYRIGHTABLE: 104 bits.

● Question: Can we reduce the number of bits needed to encode text?

The Star of Today's Show

The Star of Today's Show

The Star of Today's Show

KIRK'S DIKDIK

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

● If we’re specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

● If we’re specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

● Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

● If we’re specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

● Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

● If we’re specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

● Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

A Different Encoding

● ASCII uses one byte per character. There are
256 possible bytes.

● If we’re specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

● Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

● This uses 37.5% as much space as what ASCII
uses. That's a big improvement!

The Journey Ahead

● Storing data using the ASCII encoding is portable across systems, but
is not ideal in terms of space usage.

● Building custom codes for specific strings might let us save space.

● Idea: Use this approach to build a compression algorithm to reduce
the amount of space needed to store text.

Compression
Algorithms

Today's Main Idea

● If we can find a way to
give all characters a bit pattern,
that both the sender and receiver know about, and
that can be decoded uniquely,

then we can represent the same piece of text in multiple different
ways.

● Goal: Find a way to do this that uses less space than the standard
ASCII representation.

Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression
on a stream of characters or other data.
○ Lossless compression means that we make the amount of data smaller without losing any of the

details, and we can decompress the data to exactly the same as it was before compression.

Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression
on a stream of characters or other data.

● Virtually everything that you do online involves data compression.
○ When you visit a website, download a file, or transmit video/audio, the data is compressed

when sending and decompressed when receiving.
○ The video stream you're watching on Zoom right now has a compression of roughly 2000:1,

meaning that a 2MB image is compressed down to 1000 bytes!

Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression
on a stream of characters or other data.

● Virtually everything that you do online involves data compression.

● Compression algorithms identify patterns in data and take advantage of those
patterns to come up with more efficient representations of that data!

Taking Advantage of Redundancy

● Not all letters have the same
frequency in KIRK'S DIKDIK.

● The frequencies of each letter
are shown to the right.

● So far, we’ve given each letter a
code of the same length.

● Key Question: Can we give
shorter encodings to more
common characters?

Morse Code

● Morse Code is one coding system
that makes use of this insight!

● The code for very frequent letters
(e, t, a) are much shorter than the
codes for very infrequent letters (q,
k, j).

A First Attempt

Shorter codes for more
frequent characters

A First Attempt

01010101110000100010

A First Attempt

01010101110000100010

How do we decode this if
we don't know the
original message?

A First Attempt

01010101110000100010

A First Attempt

01010101110000100010

What Went Wrong?

● If we use a different number of bits for each letter, we can't necessarily
uniquely determine the boundaries between letters.

● We need an encoding that makes it possible to determine where one
character stops and the next starts.

● Is this possible? If so, how?

Prefix Codes

● A prefix code is an encoding
system in which no code is a
prefix of another code.

● Here’s a sample prefix code for
the letters in KIRK'S DIKDIK.

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Summary

● Using this prefix code, we can represent KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

● This uses just 34 bits, compared to our initial 104 (using ASCII). Wow!

● Many questions remain: Where did this code come from? How could you come
up with codes like this for other strings? What makes a "good" prefix coding
scheme? What does this all have to do with trees?

Prefix Codes Summary

● Using this prefix code, we can represent KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

● This uses just 34 bits, compared to our initial 104 (using ASCII). Wow!

● Many questions remain: Where did this code come from? How could you come
up with codes like this for other strings? What makes a "good" prefix coding
scheme? What does this all have to do with trees?

The Trees are Back in Town

● Main Insight: We can represent a prefix coding scheme with a binary tree! This
special type of binary tree is called a coding tree.

The Trees are Back in Town

● Main Insight: We can represent a prefix coding scheme with a binary tree! This
special type of binary tree is called a coding tree.

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: 101000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S 000001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S K 001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S K 001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S K 001

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: S K I

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Prefix Coding Mystery: SKI

K D ' ␣I R S

0

0

0 0 0 0

0

1

1

1

1

1 1

Coding Trees

● Not all binary trees will work as
coding trees.

Coding Trees

● Not all binary trees will work as
coding trees.

● Why is the one to the right not a
valid coding tree? A B

C ED F

0

0 0

1

1 1

Coding Trees

● Not all binary trees will work as
coding trees.

● Why is the one to the right not a
valid coding tree?

● Answer: It doesn’t give a prefix
code. The code for A is a prefix for
the codes for C and D.

A B

C ED F

0

0 0

1

1 1

Coding Trees

● A coding tree is valid if all the letters
are stored at the leaves, with
internal nodes just doing the
routing.

● Goal: Find the best coding tree for a
string.

● Question: How do we find the best
binary tree with this property?

C 0 6

0

0 0

1

1 1

S 1

0 1

Announcements

Announcements

● Assignment 6 will be released by the end of the day today and will be due on
Wednesday, August 12 at 11:59pm PDT. This is a hard deadline – there is no
grace period and no submissions will be accepted after this time.

● Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will
have the opportunity to schedule your final presentation time after submitting.
Reports should be submitted to Paperless and time slot sign-ups will also
happen through Paperless.

Huffman Coding

Story Time
Link to full story here:
https://www.maa.org/sites/default/files/images/upload_library/
46/Pengelley_projects/Project-14/Huffman.pdf

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf
https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf

The Algorithm

Huffman Coding

● Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a provably minimal encoding for a given pattern of
letter frequencies.

Huffman Coding

● Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a provably minimal encoding for a given pattern of
letter frequencies.

● Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

Huffman Coding

● Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a provably minimal encoding for a given pattern of
letter frequencies.

● Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

● The Huffman coding algorithm is a flexible, powerful, adaptive algorithm for
data compression. And you will implement it on the final assignment as your
capstone accomplishment of the quarter!

Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:

Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:
○ Build a frequency table that tallies the number of times each character appears in

the text.

Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:
○ Build a frequency table that tallies the number of times each character appears in

the text.
○ Initialize an empty priority queue that will hold partial trees (represented as

TreeNode*)

Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:
○ Build a frequency table that tallies the number of times each character appears in

the text.
○ Initialize an empty priority queue that will hold partial trees (represented as

TreeNode*)
○ Create one leaf node per distinct character in the input string. Add each new leaf

node to the priority queue. The weight of that leaf is the frequency of the character.

Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:
○ Build a frequency table that tallies the number of times each character appears in

the text.
○ Initialize an empty priority queue that will hold partial trees (represented as

TreeNode*)
○ Create one leaf node per distinct character in the input string. Add each new leaf

node to the priority queue. The weight of that leaf is the frequency of the character.
○ While there are two or more trees in the priority queue:

■ Dequeue the two lowest-priority trees.
■ Combine them together to form a new tree whose weight is the sum of the

weights of the two trees.
■ Add that tree back to the priority queue.

Huffman in Action

Our goal: Build the optimal encoding
tree for KIRK'S DIKDIK

1) Build the frequency table

Input Text: KIRK'S DIKDIK

1) Build the frequency table

Input Text: KIRK'S DIKDIK

2) Initialize the priority queue
higher priority lower priority

3) Add all unique characters as leaf nodes to queue
higher priority lower priority

3) Add all unique characters as leaf nodes to queue
higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4

4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4

higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4

higher priority lower priority

S ' R D I K

␣

1

1 1 1 2 3 4

higher priority lower priority

␣

' R D I K

1

S

1

1 1 2 3 4

higher priority lower priority

␣ S

' R D I K

1 1

0 1

1 1 2 3 4

higher priority lower priority

␣ S

' R D I K

1 1

0 1

2

1 1 2 3 4

higher priority lower priority

␣ S

' R D I K

1 1

0 1

2

1 1 2 3 4

higher priority lower priority

␣ S

' R D I K

1 1

0 1

1 1 2 3 42

higher priority lower priority

␣ S

R D I K

1 1

0 1

1 2 3 4

'

1

2

higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

2

higher priority lower priority

␣ S

D I K

1 1

0 1

2 2 3 4

'

1

R

1

0 1

higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2

2

higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2

2

higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

22

higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

0 1

4

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4

0 1

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4

0 1

5

higher priority lower priority

␣ S

D I

K

1 1

0 1

2 3

4

'

1

R

1

0 1

0 1

4

0 1

5

higher priority lower priority

␣ S

D I

1 1

0 1

2 3
'

1

R

1

0 1

0 1

4

0 1

5

K

4

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5

0 1

higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5

0 1

8

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1

5

0 1

8

higher priority lower priority

␣ S

D
I

K

1 1

0 1

2
3

4

'

1

R

1

0 1

0 1

0 1

0 1

8

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1 0 1

0 1

higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1 0 1

0 1

13

␣ S

D

I K

0 1
' R

0 1 0 1

0 1 0 1

0 1

␣ S

D

I K

0 1
' R

0 1 0 1

0 1 0 1

0 1

http://www.youtube.com/watch?v=4lw_UL7p2_g

http://www.youtube.com/watch?v=i9WwNOzdECk

One important final detail...

Prefix Codes Example

10010011000011011100
11101101110110

So far we've only thought
about transmitting the
compressed message.

Prefix Codes Example

10010011000011011100
11101101110110

But we need this
information in order to
be able to decompress.

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

10010011000011011100
11101101110110

Transmitting the Tree

● In order to decompress the text, we have to remember what encoding we
used!

● Idea: Prefix the compressed data with a header containing information to
rebuild the tree. This might increase the total file size in some cases!

● Theorem: There is no compression algorithm that can always compress all
inputs.
○ Proof: Take CS103!

Summary

Huffman Encoding Summary

● Data compression is a very important real-world problem that relies on
patterns in data to find efficient, compact data representations schemes.

● In order to support variable-length encodings for data, we must use prefix
coding schemes. Prefix coding schemes can be modeled as binary trees.

● Huffman encoding uses a greedy algorithm to construct encodings by building
a tree from the bottom up, putting the most frequent characters higher up in
the coding tree.

● We need to send the encoding table with the compressed message.

More to Explore

● UTF-8 and Unicode
○ A variable-length encoding that has since replaced ASCII.

● Kolmogorov Complexity
○ What’s the theoretical limit to compression techniques?

● Adaptive Coding Techniques
○ Can you change your encoding system as you go?

● Shannon Entropy
○ A mathematical bound on Huffman coding.

● Binary Tries
○ Other applications of trees like these!

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

Core
Tools

User/client
Implementation

real-world
algorithms

Hashing

