Huffman Coding

Today's question has a visual component, posted
on the next slide.

A
()

-

If a binary tree wore pants, would it wear them like
in picture A or in picture B?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
Diagnostic
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we use trees to

TOday’S develop more compact and
guestions

efficient data
representation techniques?

Binary Search Tree Review

Today’s

tOpiCS . Data Compression and
Encoding

Huffman Coding

Review

[binary search trees]

The distance from each element (node) in a tree to the
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structvre and efficiently

man f,bu/ate data?

What is the interface for the user? Abstract Data

(, Maps, etc.) Structures
How is our data organized? Data Organization
(binary heaps, , Huffman trees) Strategies

?
What stores our data* Fundamental C++

(arrays, linked lists,) Data Storage

How is data represented electronically? {-
(RAM) Computer

Hardware

Levels of abstraction

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o0 .size() - 0O(1) o0 .size() - 0O(1)
o .add() - 0O(1) o .peek () - O(1) o .isEmpty () - O(1)
o wv[i] - O(1) O .enqueue() - 0O(1) © .add() - O(log(n))
0 .insert() - O(n) 0 .dequeue() - 0O0(1) 0 .remove() - O(log(n))
o .remove() - O(n) O .isEmpty () - O(1) o .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
0 traversal - O(n)
e Stacks e Maps

e Grids .size() - O(1) .size() - 0(1)
o .numRows () /.numCols () .peek () - O(1) .isEmpty () - O(1)

- 0(1) .push() - O(1) m[key] - O(log(n))

.contains () - O(log(n))
traversal - O(n)

ocgl[i]l[3] - O(1) .pop() — O(1)
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

o O O O O O
o |0 O O O

A binary search tree is either...

an empty data
structure represented
by nullptr or...

and whose right
subtree is a BST of
larger values than x.

a single node,
whose left subtree is
a BST of smaller
values than Xx...

There are n nodes in the tree, but
the path to each node is short
(~0(log n))

106 < 108
106 > 103
106 < 107

103

How could we check if 106 is in this
tree?

176 > 108
176 > 154
170 > 166

How could we add 170 to this tree?

176 > 108
176 > 154
170 > 166

How could we add 170 to this tree?

Binary Search Tree Properties

e There are multiple valid BSTs for the same set of data. How you construct the
tree/the order in which you add the elements to the tree matters!

e A binary search tree is if its height is 0(1log n), where n is the number
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
o An is built by repeatedly choosing the median element as

the root node of a given subtree and then separating elements into groups less than
and greater than that median.

o Lookup, insertion, and deletion with balanced BSTs all operate in 0(log n) runtime.
A self-balancing BST reshapes itself on insertions and deletions to stay balanced
(how to do this is beyond the scope of this class).

Implementing a Set with a BST

e Binary search trees are a great backing store for a data structure in which
lookup/additional/removal all needs to be fast and the order of elements
doesn't matter.

e This makes them a great choice for the internal data storage of a Set or Map
ADT!

e Thus, we are able to build our own version of the Set ADT by using a BST to
organize the internal structure of the data.

OurSet summary

e Our tree utility functions (inorderPrint, freeTree) showed up as private

member functions/helpers!
o In-order traversal prints our elements in the correctly sorted order!

e Using a BST allowed us to take advantage of recursion to traverse our data
and get an 0(log n) runtime for our methods.

® Rewiring trees can be complicated!
o Make sure to consider when nodes need to be passed by reference.
o Check out the remove method after class if you're interested in seeing an example
of tree rewiring (you won’t be required to do anything this complex with tree
rewiring).

How can we use trees to
develop more compact and
efficient data representation

techniques?

Abstract Data

- What is the interface for the user? Structures
O — o — e = =
._8
© How is our data organized? Data Organization
I (binary heaps, BSTs, Huffman trees) Strategies
O
©
G
O What stores our data? Fundamental C++
w (arrays, linked lists, trees) Data Storage
Q
>
Q e
—
How is data represented electronically?
RAM Computer
() Hardware

Abstract Data

- What is the interface for the user? Structures
O — o — e = =
.8
© How is our data organized? Data Organization
I (binary heaps, BSTs,) Strategies
O
©
G
O What stores our data? Fundamental C++
w (arrays, linked lists,) Data Storage
Q
G {-
Q .
—
How is data represented electronically?
RAM) Computer
(Hardware

: Many of the following clides were
adapted From Keith Schwarz'e Winter 2020 ‘Beyond
Data Strocturee” lecture. Thank you Keith for having
cuch great lecture examples!

Data Storage and
Representation

How do computers store and represent data?

How do computers store and represent data?

How do computers store and represent data?

Just a Little Bit of Magic

e Digital data is stored as

Just a Little Bit of Magic

e Digital data is stored as
o These sequences are encoded in physical devices by magnetic orientation on small (10nm!)
metal particles or by trapping electrons in small gates. This is where the magic happens!

Just a Little Bit of Magic

e Digital data is stored as
o These sequences are encoded in physical devices by magnetic orientation on small (10nm!)
metal particles or by trapping electrons in small gates. This is where the magic happens!

e Asingle Oor1iscalled a

Just a Little Bit of Magic

e Digital data is stored as
o These sequences are encoded in physical devices by magnetic orientation on small (10nm!)
metal particles or by trapping electrons in small gates. This is where the magic happens!

e Asingle Oor1iscalled a

e A group of eight bits is called a

00000000, 00000001, 00000010,
00000011, 00000100, 00000101,

Just a Little Bit of Magic

e Digital data is stored as
o These sequences are encoded in physical devices by magnetic orientation on small (10nm!)
metal particles or by trapping electrons in small gates. This is where the magic happens!

e Asingle Oor1iscalled a

e A group of eight bits is called a

00000000, 00000001, 00000010,
00000011, 00000100, 00000101,

e There are 28 = 256 different bytes.

o Good recursive backtracking practice: Write a function to list all possible byte sequences!

Binary Representation

e The system of using sequences of Os and 1s to represent data is called
o Binary can be used to encode numbers, text, images, etc.

Binary Representation

e The system of using sequences of Os and 1s to represent data is called

e Similar to how we previously encountered hexadecimal (base-16) numbers,

binary numbers can be thought of as expressed in a base-2 system.
o To produce a number in base 2, (exactly
analogous to how in base 10 each digit represents a power of 10).

Binary Representation

e The system of using sequences of Os and 1s to represent data is called

e Similar to how we previously encountered hexadecimal (base-16) numbers,
binary numbers can be thought of as expressed in a base-2 system.

® Representing my age in different numerical systems
o Base10:22=2*10'+2*10°=20+2=22
o Base 2: =1*2+0*2%3+1*22+1*2'+0*2°=16+4+2=22

ON A SCALEOF 1 To 10,
HOW LIKELY IS IT THAT
THIS QUESTION IS
USING BINARY?

{ U7
MM?SAH?)

Representing Text

e We think of strings as being made of characters representing letters, numbers,
emojis, etc.

Representing Text

e However, we just said that computers require everything to be written as

Representing Text

e To bridge the gap, we need to agree on some way of

Representing Text

e Idea: Assign each character a sequence of bits called a

ASCII

e Early (American) computers needed some standard way to send output to their
(physical!) printers.

e Since there were fewer than 256 different characters to print (1960’s America!),
each character was assigned a one-byte value.
o This initial code was called . Surprisingly, it’s still around, though in a
modified form.

e For example, the letter A is represented by the byte 81000001 (whose
numerical representation is 65). You can still see this in C++:
cout << int('A') << endl; // Prints 65

ASCIl Mystery: 010000100100000101000111

ASCIl Mystery: 010000100100000101000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

L o m m O N |

ASCIl Mystery: 010000100100000101000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

L o m m O N |

ASCIl Mystery: 0100000101000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

L o m m O N |®

ASCIl Mystery: B 0100000101000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

L o m m O N |®

ASCIl Mystery: B 01000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

L o m m O N |

ASCIl Mystery: B A 01000111

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

L o m m O N |

ASCIl Mystery: B A

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

r|iojlm m O | MN | O

ASCIl Mystery: B A

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

r|iojlm m O | MN | O

ASCIl Mystery: B A G

character code

e Here’s a small segment from the A 01000001
ASCIl encodings for characters.

01000010
01000011
01000100
01000101
01000110
01000111
01001000

e What is the mystery word in the title
of this slide?

r|iojlm m O | MN | O

ASCIl Mystery: B A G

character code
e Here’s a small segment from the A 101000001
ASCIl encodings for characters.
B /01000010
e What is the mystery word in the title C /01000011
f this slide?
orthis slide D 01000100
e Thus, in the computer's eyes, "BAG" E 01000101
is equivalent to the bit sequence F 01000110
010000100100000101000111
G |01000111
H (01001000

An Observation

e |n ASCII, every character has exactly the same number of bits init.

e Any message with n characters will use up exactly 8n bits.
o Space for CS106BLECTURE: 104 bits.
o Space for COPYRIGHTABLE: 104 bits.

® Question: Can we reduce the number of bits needed to encode text?

The Star of Today's Show

The Star of Today's Show

The Star of Today's Show

KIRK'S DIKDIK

A Different Encoding

e ASCIl uses one byte per character. There are
256 possible bytes.

A Different Encoding

e ASCIl uses one byte per character. There are
256 possible bytes.

e If we're specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

A Different Encoding

e ASCIl uses one byte per character. There are
256 possible bytes.

e If we're specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

e Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

A Different Encoding

e ASCIl uses one byte per character. There are
256 possible bytes.

e If we're specifically writing the string KIRK'S
DIKDIK, which has only seven different
characters, using full bytes is wasteful.

e Here’s a three-bit encoding we can use to
represent the letters in KIRK'S DIKDIK.

character code
K 000
I 001
R 010
! 011
S 100
y 101
D 110

A Different Encoding

character code
e ASCIl uses one byte per character. There are K 000
256 possible bytes. I 001
e |f we're specifically writing the string KIRK'S
DIKDIK, which has only seven different R 010
characters, using full bytes is wasteful. ! 011
e Here’s a three-bit encoding we can use to S 100
represent the letters in KIRK'S DIKDIK. . 101
D 110
000 001|/010|000 011/100|161 110001 000 |110|001 000
K I R K| '"|S|o, D|/I K|D I K

A Different Encoding

character code

e ASCIl uses one byte per character. There are K 000
256 possible bytes. I 001
e |f we're specifically writing the string KIRK'S
DIKDIK, which has only seven different R 010
characters, using full bytes is wasteful. ! 011
e Here’s a three-bit encoding we can use to S 100
represent the letters in KIRK'S DIKDIK. . 101
® This uses D 11@

. That's a big improvement!

000/ 001/010 000011100101 110|001|000/110 001 000
K I|R K|" /S|, D|/I K D I K

The Journey Ahead

e Storing data using the ASCII encoding is portable across systems, but
is not ideal in terms of space usage.

e Building custom codes for specific strings might let us save space.

e Idea: Use this approach to build a to reduce
the amount of space needed to store text.

Compression
Algorithms

Today's Main Idea

e If we can find a way to
give all characters a bit pattern,
that both the sender and receiver know about, and
that can be decoded uniquely,

then we can represent the same piece of text in multiple different
ways.

e Goal: Find a way to do this that uses less space than the standard
ASCII representation.

Compression Algorithms

e Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

Compression Algorithms

e Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

e |n particular, we are interested in algorithms that provide

on a stream of characters or other data.

o Lossless compression means that we make the amount of data smaller without losing any of the
details, and we can decompress the data to exactly the same as it was before compression.

Compression Algorithms

e Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

e |n particular, we are interested in algorithms that provide
on a stream of characters or other data.

e \Virtually everything that you do online involves data compression.
o When you visit a website, download a file, or transmit video/audio, the data is
when sending and when receiving.
o The video stream you're watching on Zoom right now has a compression of roughly 2000:1,
meaning that a 2MB image is compressed down to 1000 bytes!

Compression Algorithms

e Compression algorithms are a whole class of real-world algorithms that are
have widespread prevalence and importance.

e |n particular, we are interested in algorithms that provide
on a stream of characters or other data.

e \Virtually everything that you do online involves data compression.

e Compression algorithms and take advantage of those
patterns to come up with more efficient representations of that data!

Taking Advantage of Redundancy

e Not all letters have the same character frequency
frequency in KIRK'S DIKDIK. K 4

e The frequencies of each letter I 3
are shown to the right. D)

e So far, we've given each letter a R 1
code of the same length. , 1

e Key Question: Can we give
shorter encodings to more S L
common characters? - 1

Morse Code

e Morse Code is one coding system
that makes use of this insight!

e The code for very frequent letters
(e, t, @) are much shorter than the
codes for very infrequent letters (q,

K, j).

10X UVOZEZrAR——TITOmMmMUOm>

International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.
4. The space between letters is three units.

5. The space between words is seven units.

o mmm Ue o mm

e oo Veeoomm

N ¢ Im ¢ We mm mm

- e e X mmm o ¢ mmm

® Y mmm o mmm mmm
‘XY K 4 B KX
- - e

oo oo

o0

o INN BN NN

N o lo mum o mmm mmm
ommm e o)PAEE B N
- - S3e e ¢ mm mm

- e 49000 mm

I . 500000

o NN Hm o OCmmeoeooo

N . ¢ ‘A EXXK)

o mmm o Somm mmm mm 0 ©
oo o Om N I = ¢
[O oon BEE SN

A First Attempt

character code
K ¢
I 1
D 00
R 01
' 10
S 11
i 100

Chorter codec for more

frequent characters

A First Attempt

character code

K 0

I 1

D 00 01010101110000100010
R 01

' 10

S 11

. 100

o
[

01

(O

10 /111 |160/00 | 1 | O [GO| 1 | ©

A First Attempt

How do we decode thic if
we don't know the
character code
K 0 original mescage?

1

I

D 00 010101011160000100010
R 01
S

10
11
100

A First Attempt

character code

K 0

I 1

D 00 01010101110000100010
R 01

' 10

S 11

. 100

o
[

01

(O

10 /111 |160/00 | 1 | O [GO| 1 | ©

A First Attempt

character code

K 0
I 1
D 00 01010101110000100010
R 01
' 10
S il
L | 100
©1 |01 |01|01| 1 10| ©0 (0O |10| O | O |10
RIRIRIR|I|"|K|D|"|K|]K]"

What Went Wrong?

e If we use a different number of bits for each letter, we can't necessarily

e We need an encoding that makes it possible to determine where one
character stops and the next starts.

® |[s this possible? If so, how?

Prefix Codes

o A is an encoding
system in which no code is a
prefix of another code.

e Here’s a sample prefix code for
the letters in KIRK'S DIKDIK.

character code
K 10
I 01
D 111
R 001
: 000
S 1101
1100

Prefix Codes Example

character

code

K 10

I 01

D 111
10010011000011011100 I} 001
111901101110110 000

S 1101

i1 1100
10 | 01 |001| 10 (00011011160 111| 01 | 10 111 01 | 10
K|{I|R|K|"'"|S|, D|I | K|D|I| K

Prefix Codes Example

character

code

10010011000011011100
11101101110110

K 10
I 01
D 111
R 001
: 000
S 1101

1100

Prefix Codes Example

character

code

0010011000011011100
11101101110110

K 10
I 01
D 111
R 001
' 000
S 1101

1100

Prefix Codes Example

character

code

0100110000110111600
11101101110110

K 10
I 01
D 111
R 001
' 000
S 1101

1100

Prefix Codes Example

character

code

K

10

01

0100110000110111600
11101101110110

111

-1 2|0 | H

001

000

10

)

1101

1100

Prefix Codes Example

character

code

K

10

01

10011000011011100

11101101110110

111

-0 H

001

000

10

)

1101

1100

Prefix Codes Example

character

code

K

10

01

00110000110111600

11101101110110

111

-1 2|0 | H

001

000

10

)

1101

1100

Prefix Codes Example

character

code

K

10

01

00110000110111600

11101101110110

111

-1 2|0 | H

001

000

10

01

)

1101

1100

Prefix Codes Example

character

code

K

10

01

0110000110111600

11101101110110

111

-0 H

001

000

10

01

)

1101

1100

Prefix Codes Example

character

code

K

10

01

11000011011100

11101101110110

111

-0 H

001

000

10

01

)

1101

1100

Prefix Codes Example

character

code

K

10

01

1000011011100
11101101110110

111

-0 H

001

000

10 | 01

)

1101

1100

Prefix Codes Example

character

code

K

10

01

1000011011100

11101101110110

111

-0 H

001

000

10

01

001

)

1101

1100

Prefix Codes Summary

e Using this prefix code, we can represent KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

e This uses just 34 bits, compared to our initial 104 (using ASCII). Wow!

e Many questions remain: Where did this code come from? How could you come
up with codes like this for other strings? What makes a "good" prefix coding
scheme? What does this all have to do with trees?

Prefix Codes Summary

e Using this prefix code, we can represent KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

e This uses just 34 bits, compared to our initial 104 (using ASCII). Wow!

e Many questions remain: Where did this code come from? How could you come
up with codes like this for other strings? What makes a "good" prefix coding
scheme? What does this all have to do with trees?

The Trees are Back in Town

e Main Insight: We can represent a prefix coding scheme with a binary tree! This
special type of binary tree is called a

The Trees are Back in Town

e Main Insight: We can represent a prefix coding scheme with a binary tree! This

special type of binary tree is called a

character code
K 000

I 001

D 010

R 011

' 100

S 101
110

. (D —
01 01

Prefix Coding Mystery: 101000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 101000001

o A)—

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 101000001

o A)—

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 101000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 161000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 161000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: 000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 000001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 000001

o A)—

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 600001

o A)—

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 600001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 660001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S 660001

o A 0

0 1 0 1
01 01 01 0

Prefix Coding Mystery: S 001

o A 0

0 1 0 1
01 01 01 0

Prefix Coding Mystery: S 001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S K 001

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S K 001

o A)—

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S K

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: S K

o A 0

(7] 1 (%) 1
91 01 91 e

Prefix Coding Mystery: SKI

o A 0

(7] 1 (%) 1
91 01 91 e

Coding Trees

e Not all binary trees will work as
coding trees.

Coding Trees

e Not all binary trees will work as
coding trees.

e Why is the one to the right not a
valid coding tree?

Coding Trees

e Not all binary trees will work as
coding trees.

e Why is the one to the right not a
valid coding tree?

e Answer: |t doesn’t give a prefix
code. The code for A is a prefix for
the codes for C and D.

Coding Trees

e A coding tree is valid if all the letters

are stored at the , With
internal nodes just doing the
routing.

e Goal: Find the best coding tree for a
string.

® Question: How do we find the best
binary tree with this property?

Announcements

Announcements

e Assignment 6 will be released by the end of the day today and will be due on
Wednesday, August 12 at 11:59pm PDT. This is a hard deadline — there is no
grace period and no submissions will be accepted after this time.

e Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will
have the opportunity to schedule your final presentation time after submitting.
Reports should be submitted to Paperless and time slot sign-ups will also
happen through Paperless.

Huffman Coding

Story Time

Link to full story here:

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf
https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf

The Algorithm

Huffman Coding

e Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a for a given pattern of
letter frequencies.

Huffman Coding

e Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a for a given pattern of
letter frequencies.

e Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

Huffman Coding

e Huffman coding is an algorithm for generating a coding tree for a given piece
of data that produces a for a given pattern of
letter frequencies.

e Different data (different text, different images, etc.) will each have their own
personalized Huffman coding tree.

e The Huffman coding algorithm is a flexible, powerful, adaptive algorithm for

data compression. And you will implement it on the final assignment as your
capstone accomplishment of the quarter!

Huffman Coding Pseudocode

e To generate the optimal encoding tree for a given piece of text:

Huffman Coding Pseudocode

e To generate the optimal encoding tree for a given piece of text:
o Build a that tallies the number of times each character appears in
the text.

Huffman Coding Pseudocode

e To generate the optimal encoding tree for a given piece of text:

o Build a that tallies the number of times each character appears in
the text.
o Initialize an empty that will hold partial trees (represented as

TreeNode¥*)

Huffman Coding Pseudocode

e To generate the optimal encoding tree for a given piece of text:

o Build a that tallies the number of times each character appears in
the text.

o Initialize an empty that will hold partial trees (represented as
TreeNode¥*)

o Create . Add each new leaf

node to the priority queue. The weight of that leaf is the frequency of the character.

Huffman Coding Pseudocode

e To generate the optimal encoding tree for a given piece of text:

o Build a that tallies the number of times each character appears in
the text.

o Initialize an empty that will hold partial trees (represented as
TreeNode¥*)

o Create . Add each new leaf

node to the priority queue. The weight of that leaf is the frequency of the character.
o While there are two or more trees in the priority queue:
m Dequeue the two lowest-priority trees.
| whose weight is the sum of the
weights of the two trees.
m Add that tree back to the priority queue.

Huffman in Action

Our goal: Build the optimal encoding
tree for KIRK'S DIKDIK

1) Build the frequency table

Input Text: KIRK'S DIKDIK

1) Build the frequency table

Input Text: KIRK'S DIKDIK

character frequency

K 4

-1 0 | H

wn

R R (R R (N W

2) Initialize the priority queue

higher priority lower priority
-

{

3) Add all unique characters as leaf nodes to queue

higher priority lower priority
4,

{

character frequency

K 4

-100 H

wn

R R R RN W

3) Add all unique characters as leaf nodes to queue

higher priority lower priority

character frequency

K 4

-0 0 |H

wn

R R R RN W

4) Build the Huffman tree by joining adjacent nodes

higher priority lower priority

higher priority lower priority

< >
1 1 1 1 2 3 4

higher priority lower priority

>
1 1 1 2 3 4

higher priority lower priority

>
1 1 2 3 4

higher priority lower priority

>
1 1 2 3 4

higher priority lower priority

>
1 1 2 3 4

higher priority lower priority

>
1 1 2 3 4

higher priority lower priority

>
1 1 2 2 3 4
‘Qaalﬁﬁﬁ}
1 1

higher priority lower priority

>
1 2 2 3 4
Qaalﬁﬁﬁ}
1 1

higher priority lower priority

>
2 2 3 4
aﬁICCC}
1 1

1 1

higher priority lower priority

>
2 2 3 4
aﬁICCC}
1 1

higher priority lower priority

2 2 3 4
aal“‘}
121

higher priority lower priority

2 3 4

higher priority lower priority

< >
2 2 2 3 4
{eal‘aﬁl © © |
1 1 1 1

higher priority lower priority

2 2 3 a
{ ‘eﬁl O © }
1 1

higher priority lower priority

2 3 a
ﬁ O © }

1 1

higher priority lower priority

>
2 3 4
ﬁ © ® |
1 1

1

higher priority lower priority

>
2 3 4
ﬁ © ® |
1 1

1

higher priority lower priority
< >

[Aéé ;

1

higher priority lower priority

2 3 4
%) 1“9
0
1

1

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

higher priority lower priority

8

higher priority lower priority

8

higher priority lower priority

higher priority lower priority

character code

.
[llustrating the Huffman Algorithm

IR 7N

4 N\ f \ f/ \
114473 (17223} |22661
——— =g > ",-.._-\‘/ ..-"'r —--c") /\ e A
12702 A TR ey Lo P o
(13532; 6966 7507 || 8167 9056 | /% \ |"' o "|
LE] 35X Ll o (LA T [P
6749 | /_ ey | e 2 | pr—
N | 6783 | 4253 || 3987 || 6094 || 6327 ‘
L D|R| H

http://www.youtube.com/watch?v=4lw_UL7p2_g

The Huffman Tree for Scrabble Tiles
. (1) Q [alli] (o [E] O (i)
| | ./> ? \ BA ,>\

(o) (0) \ \ /

N\ \

2t A - \ < 7/ «"\/ (3] b |8 """- 3
/ {\ ') A/; [¢) { 4 | RilT 6 0
STITavEl N 4 T\ I / = == 7“ \
D L s) ‘ ‘ { ‘ f / \ f &

REGERERE O O rifo

http://www.youtube.com/watch?v=i9WwNOzdECk

One important Final detadil...

Prefix Codes Example

character

code

K

10

01

10010011000011011100
11101101110110

111

-1 0| H

001

000

So far we've only thought
abouvt transmitting the

compresced mescage.

)

1101

1100

Prefix Codes Example

10010011000011011100
11101101110110

But we need thic

information in order to

be able to decomprecs.

character

code

K

10

01

111

-1 0| H

001

000

)

1101

1100

A

Prefix Codes Example

10010011000011011100
11101101110110

Prefix Codes Example

. = IDEAWHAT
10010011000011011100 | EEEEASGRE L L L
11101101110110 =

Transmitting the Tree

e In order to decompress the text, we have to remember what encoding we
used!

) Prefix the compressed data with a header containing information to
rebuild the tree. This might increase the total file size in some cases!

Encoded Tree 110111001011101111000100110101611110..

° There is no compression algorithm that can always compress all

inputs.
o Take CS103!

Summary

Huffman Encoding Summary

e Data compression is a very important real-world problem that relies on
patterns in data to find efficient, compact data representations schemes.

e In order to support variable-length encodings for data, we must use prefix
coding schemes. Prefix coding schemes can be modeled as binary trees.

e Huffman encoding uses a greedy algorithm to construct encodings by building
a tree from the bottom up, putting the most frequent characters higher up in
the coding tree.

e We need to send the encoding table with the compressed message.

More to Explore

o A variable-length encoding that has since replaced ASCII.
o What’s the theoretical limit to compression techniques?

o Can you change your encoding system as you go?

o A mathematical bound on Huffman coding.

o Other applications of trees like these!

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

—

Diagnostic

Life after CS1068/

algorithmic recursive
testing analysis problem-solving

Hashing

hash
keys function

00
01
John Smith 03
. 03

Lisa Smith y
13

Sandra Dee T 14

15

buckets

521-8976

521-1234

521-9655

r:; ey

Hash

Hash

