
Huffman Coding
Today's question has a visual component, posted 

on the next slide. 



If a binary tree wore pants, would it wear them like 
in picture A or in picture B?

A B
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Today’s 
questions

How can we use trees to 
develop more compact and 
efficient data 
representation techniques?



Today’s 
topics

1. Binary Search Tree Review

2. Data Compression and 
Encoding

3. Huffman Coding



Review
[binary search trees]



Key Idea: The distance from each element (node) in a tree to the 
top of the tree (the root) is small, even if there are many elements.

How can we take advantage of trees to structure and efficiently 
manipulate data?
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(RAM)
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ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○  v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() 
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○  m[key] –  O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)



A binary search tree is either...

an empty data 
structure represented 
by nullptr or...

x

<x >x

a single node, 
whose left subtree is 
a BST of smaller 
values than x…

and whose right 
subtree is a BST of 
larger values than x.
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There are n nodes in the tree, but 
the path to each node is short 

(~O(log n))!
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106 < 108
106 > 103
106 < 107

How could we check if 106 is in this 
tree?
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How could we add 170 to this tree?

170 > 108
170 > 154
170 > 166
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How could we add 170 to this tree?

170 > 108
170 > 154
170 > 166

170



Binary Search Tree Properties

● There are multiple valid BSTs for the same set of data. How you construct the 
tree/the order in which you add the elements to the tree matters! 

● A binary search tree is balanced if its height is O(log n), where n is the number 
of nodes in the tree (i.e. left/right subtrees don’t differ in height by more than 1).
○ An optimal (balanced) BST is built by repeatedly choosing the median element as 

the root node of a given subtree and then separating elements into groups less than 
and greater than that median.

○ Lookup, insertion, and deletion with balanced BSTs all operate in O(log n) runtime.
○ A self-balancing BST reshapes itself on insertions and deletions to stay balanced 

(how to do this is beyond the scope of this class).



Implementing a Set with a BST

● Binary search trees are a great backing store for a data structure in which 
lookup/additional/removal all needs to be fast and the order of elements 
doesn't matter.

● This makes them a great choice for the internal data storage of a Set or Map 
ADT!

● Thus, we are able to build our own version of the Set ADT by using a BST to 
organize the internal structure of the data.



OurSet summary

● Our tree utility functions (inorderPrint, freeTree) showed up as private 
member functions/helpers!
○ In-order traversal prints our elements in the correctly sorted order!

● Using a BST allowed us to take advantage of recursion to traverse our data 
and get an O(log n) runtime for our methods.

● Rewiring trees can be complicated!
○ Make sure to consider when nodes need to be passed by reference.
○ Check out the remove method after class if you’re interested in seeing an example 

of tree rewiring (you won’t be required to do anything this complex with tree 
rewiring).



How can we use trees to 
develop more compact and 
efficient data representation 

techniques?
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Acknowledgement: Many of the following slides were 
adapted from Keith Schwarz's Winter 2020 “Beyond 
Data Structures" lecture. Thank you Keith for having 
such great lecture examples!



Data Storage and 
Representation
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Just a Little Bit of Magic

● Digital data is stored as sequences of 0s and 1s.
○ These sequences are encoded in physical devices by magnetic orientation on small (10nm!) 

metal particles or by trapping electrons in small gates. This is where the magic happens!

● A single 0 or 1 is called a bit.

● A group of eight bits is called a byte. 
00000000, 00000001, 00000010, … 
00000011, 00000100, 00000101, … 

● There are 28 = 256 different bytes.
○ Good recursive backtracking practice: Write a function to list all possible byte sequences!



Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.
○ Binary can be used to encode numbers, text, images, etc. 



Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.

● Similar to how we previously encountered hexadecimal (base-16) numbers, 
binary numbers can be thought of as expressed in a base-2 system.
○ To produce a number in base 2, each digit represents a power of 2 (exactly 

analogous to how in base 10 each digit represents a power of 10).



Binary Representation

● The system of using sequences of 0s and 1s to represent data is called binary.

● Similar to how we previously encountered hexadecimal (base-16) numbers, 
binary numbers can be thought of as expressed in a base-2 system.

● Representing my age in different numerical systems
○ Base 10: 22 = 2 * 101 + 2 * 100 = 20 + 2 = 22
○ Base 2: 10110 = 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 0 * 20 = 16 + 4 + 2 = 22
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Representing Text

● We think of strings as being made of characters representing letters, numbers, 
emojis, etc. 

● However, we just said that computers require everything to be written as zeros 
and ones. 

● To bridge the gap, we need to agree on some way of representing characters 
as sequences of bits.

● Idea: Assign each character a sequence of bits called a code.



ASCII

● Early (American) computers needed some standard way to send output to their 
(physical!) printers. 

● Since there were fewer than 256 different characters to print (1960’s America!), 
each character was assigned a one-byte value.
○ This initial code was called ASCII. Surprisingly, it’s still around, though in a 

modified form.

● For example, the letter A is represented by the byte 01000001 (whose 
numerical representation is 65). You can still see this in C++:

cout << int('A') << endl; // Prints 65
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ASCII Mystery: B A G

● Here’s a small segment from the 
ASCII encodings for characters.

● What is the mystery word in the title 
of this slide?

● Thus, in the computer's eyes, "BAG" 
is equivalent to the bit sequence 
010000100100000101000111



An Observation

● In ASCII, every character has exactly the same number of bits in it.

● Any message with n characters will use up exactly 8n bits.
○ Space for CS106BLECTURE: 104 bits.
○ Space for COPYRIGHTABLE: 104 bits.

● Question: Can we reduce the number of bits needed to encode text?
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The Star of Today's Show

KIRK'S DIKDIK
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256 possible bytes.
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A Different Encoding

● ASCII uses one byte per character. There are 
256 possible bytes.

● If we’re specifically writing the string KIRK'S 
DIKDIK, which has only seven different 
characters, using full bytes is wasteful.

● Here’s a three-bit encoding we can use to 
represent the letters in KIRK'S DIKDIK.

● This uses 37.5% as much space as what ASCII 
uses. That's a big improvement!



The Journey Ahead

● Storing data using the ASCII encoding is portable across systems, but 
is not ideal in terms of space usage.

● Building custom codes for specific strings might let us save space.

● Idea: Use this approach to build a compression algorithm to reduce 
the amount of space needed to store text.



Compression 
Algorithms



Today's Main Idea

● If we can find a way to
give all characters a bit pattern, 
that both the sender and receiver know about, and 
that can be decoded uniquely, 

then we can represent the same piece of text in multiple different 
ways.

● Goal: Find a way to do this that uses less space than the standard 
ASCII representation.
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● Compression algorithms are a whole class of real-world algorithms that are 
have widespread prevalence and importance.



Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are 
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression 
on a stream of characters or other data.
○ Lossless compression means that we make the amount of data smaller without losing any of the 

details, and we can decompress the data to exactly the same as it was before compression.



Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are 
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression 
on a stream of characters or other data.

● Virtually everything that you do online involves data compression. 
○ When you visit a website, download a file, or transmit video/audio, the data is compressed 

when sending and decompressed when receiving.
○ The video stream you're watching on Zoom right now has a compression of roughly 2000:1, 

meaning that a 2MB image is compressed down to 1000 bytes! 



Compression Algorithms

● Compression algorithms are a whole class of real-world algorithms that are 
have widespread prevalence and importance.

● In particular, we are interested in algorithms that provide lossless compression 
on a stream of characters or other data.

● Virtually everything that you do online involves data compression. 

● Compression algorithms identify patterns in data and take advantage of those 
patterns to come up with more efficient representations of that data!



Taking Advantage of Redundancy

● Not all letters have the same 
frequency in KIRK'S DIKDIK. 

● The frequencies of each letter 
are shown to the right.

● So far, we’ve given each letter a 
code of the same length. 

● Key Question: Can we give 
shorter encodings to more 
common characters?



Morse Code

● Morse Code is one coding system 
that makes use of this insight!

● The code for very frequent letters 
(e, t, a) are much shorter than the 
codes for very infrequent letters (q, 
k, j).



A First Attempt

Shorter codes for more 
frequent characters



A First Attempt

01010101110000100010



A First Attempt

01010101110000100010

How do we decode this if 
we don't know the 
original message?
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A First Attempt

01010101110000100010



What Went Wrong?

● If we use a different number of bits for each letter, we can't necessarily 
uniquely determine the boundaries between letters.

● We need an encoding that makes it possible to determine where one 
character stops and the next starts.

● Is this possible? If so, how?



Prefix Codes

● A prefix code is an encoding 
system in which no code is a 
prefix of another code.

● Here’s a sample prefix code for 
the letters in KIRK'S DIKDIK.
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Prefix Codes Summary

● Using this prefix code, we can represent KIRK'S DIKDIK as the sequence

1001001100001101110011101101110110

● This uses just 34 bits, compared to our initial 104 (using ASCII). Wow!

● Many questions remain: Where did this code come from? How could you come 
up with codes like this for other strings? What makes a "good" prefix coding 
scheme? What does this all have to do with trees?
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● Main Insight: We can represent a prefix coding scheme with a binary tree! This 
special type of binary tree is called a coding tree.
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Coding Trees

● Not all binary trees will work as 
coding trees.

● Why is the one to the right not a 
valid coding tree?

● Answer: It doesn’t give a prefix 
code. The code for A is a prefix for 
the codes for C and D.

A B
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Coding Trees

● A coding tree is valid if all the letters 
are stored at the leaves, with 
internal nodes just doing the 
routing.

● Goal: Find the best coding tree for a 
string.

● Question: How do we find the best 
binary tree with this property?
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Announcements

● Assignment 6 will be released by the end of the day today and will be due on 
Wednesday, August 12 at 11:59pm PDT. This is a hard deadline – there is no 
grace period and no submissions will be accepted after this time.

● Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will 
have the opportunity to schedule your final presentation time after submitting. 
Reports should be submitted to Paperless and time slot sign-ups will also 
happen through Paperless.



Huffman Coding



Story Time
Link to full story here: 
https://www.maa.org/sites/default/files/images/upload_library/
46/Pengelley_projects/Project-14/Huffman.pdf

https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf
https://www.maa.org/sites/default/files/images/upload_library/46/Pengelley_projects/Project-14/Huffman.pdf
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● Huffman coding is an algorithm for generating a coding tree for a given piece 
of data that produces a provably minimal encoding for a given pattern of 
letter frequencies.
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Huffman Coding

● Huffman coding is an algorithm for generating a coding tree for a given piece 
of data that produces a provably minimal encoding for a given pattern of 
letter frequencies.

● Different data (different text, different images, etc.) will each have their own 
personalized Huffman coding tree.

● The Huffman coding algorithm is a flexible, powerful, adaptive algorithm for 
data compression. And you will implement it on the final assignment as your 
capstone accomplishment of the quarter!
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Huffman Coding Pseudocode

● To generate the optimal encoding tree for a given piece of text:
○ Build a frequency table that tallies the number of times each character appears in 

the text.
○ Initialize an empty priority queue that will hold partial trees (represented as 

TreeNode*)
○ Create one leaf node per distinct character in the input string. Add each new leaf 

node to the priority queue. The weight of that leaf is the frequency of the character.
○ While there are two or more trees in the priority queue:

■ Dequeue the two lowest-priority trees.
■ Combine them together to form a new tree whose weight is the sum of the 

weights of the two trees.
■ Add that tree back to the priority queue.



Huffman in Action



Our goal: Build the optimal encoding 
tree for KIRK'S DIKDIK



1) Build the frequency table

Input Text: KIRK'S DIKDIK



1) Build the frequency table

Input Text: KIRK'S DIKDIK



2) Initialize the priority queue
higher priority lower priority



3) Add all unique characters as leaf nodes to queue
higher priority lower priority



3) Add all unique characters as leaf nodes to queue
higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4



4) Build the Huffman tree by joining adjacent nodes
higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4



higher priority lower priority

␣ S ' R D I K

1 1 1 1 2 3 4



higher priority lower priority

S ' R D I K

␣

1

1 1 1 2 3 4



higher priority lower priority

␣

' R D I K

1

S

1

1 1 2 3 4



higher priority lower priority

␣ S

' R D I K

1 1

0 1

1 1 2 3 4



higher priority lower priority

␣ S

' R D I K

1 1

0 1

2

1 1 2 3 4



higher priority lower priority

␣ S

' R D I K

1 1

0 1

2

1 1 2 3 4



higher priority lower priority

␣ S

' R D I K

1 1

0 1

1 1 2 3 42



higher priority lower priority

␣ S

R D I K

1 1

0 1

1 2 3 4

'

1

2



higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

2



higher priority lower priority

␣ S

D I K

1 1

0 1

2 2 3 4

'

1

R

1

0 1



higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2

2



higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2

2



higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

22



higher priority lower priority

␣ S

D I K

1 1

0 1

2 3 4

'

1

R

1

0 1

2



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

2

0 1

4



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4

'

1

R

1

0 1

0 1

4



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4

0 1



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4

'

1

R

1

0 1

0 1

4

0 1

5



higher priority lower priority

␣ S

D I

K

1 1

0 1

2 3

4

'

1

R

1

0 1

0 1

4

0 1

5



higher priority lower priority

␣ S

D I

1 1

0 1

2 3
'

1

R

1

0 1

0 1

4

0 1

5

K

4



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5

0 1



higher priority lower priority

␣ S

D

I

K

1 1

0 1

2

3

4
'

1

R

1

0 1

0 1

0 1

5

0 1

8



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1

5

0 1

8



higher priority lower priority

␣ S

D
I

K

1 1

0 1

2
3

4

'

1

R

1

0 1

0 1

0 1

0 1

8



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1 0 1

0 1



higher priority lower priority

␣ S

D

I K

1 1

0 1

2

3 4
'

1

R

1

0 1 0 1

0 1 0 1

0 1

13



␣ S

D

I K

0 1
' R

0 1 0 1

0 1 0 1

0 1



␣ S

D

I K

0 1
' R

0 1 0 1

0 1 0 1

0 1



http://www.youtube.com/watch?v=4lw_UL7p2_g


http://www.youtube.com/watch?v=i9WwNOzdECk


One important final detail...



Prefix Codes Example

10010011000011011100
11101101110110

So far we've only thought 
about transmitting the 
compressed message.



Prefix Codes Example

10010011000011011100
11101101110110

But we need this 
information in order to 
be able to decompress.



Prefix Codes Example

10010011000011011100
11101101110110



Prefix Codes Example

10010011000011011100
11101101110110



Transmitting the Tree

● In order to decompress the text, we have to remember what encoding we 
used!

● Idea: Prefix the compressed data with a header containing information to 
rebuild the tree. This might increase the total file size in some cases!

● Theorem: There is no compression algorithm that can always compress all 
inputs.
○ Proof: Take CS103!



Summary



Huffman Encoding Summary

● Data compression is a very important real-world problem that relies on 
patterns in data to find efficient, compact data representations schemes.

● In order to support variable-length encodings for data, we must use prefix 
coding schemes. Prefix coding schemes can be modeled as binary trees.

● Huffman encoding uses a greedy algorithm to construct encodings by building 
a tree from the bottom up, putting the most frequent characters higher up in 
the coding tree.

● We need to send the encoding table with the compressed message.



More to Explore

● UTF-8 and Unicode
○ A variable-length encoding that has since replaced ASCII.

● Kolmogorov Complexity
○ What’s the theoretical limit to compression techniques?

● Adaptive Coding Techniques
○ Can you change your encoding system as you go?

● Shannon Entropy
○ A mathematical bound on Huffman coding.

● Binary Tries
○ Other applications of trees like these!



What’s next?



vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

recursive 
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

Core 
Tools

User/client
Implementation

real-world 
algorithms



Hashing


