Introduction to Recursion

What’s been the most challenging part of
Assignment 2 for you so far?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

How can we take

TOday’S advantage of self-similarity
guestion

within a problem to solve it
more elegantly?

Review

Tod ay’s . Defining recursion
topics

Recursion + Stack Frames
(e.g. factorials)

Recursive Problem-Solving

(e.qg. string reversal)

Review

(Big O)

Big-O Notation

o is a way of quantifying the rate at which some quantity grows.
e Example: This just says that these
o A square of side length r has area 0 (r?). } quantities qrow at the came
o A circle of radius r has area O (r?). relative ratec. It does not
cay that theyre equall

a] laa | | A

V=

r ; |
2r | 2r

ﬂIG

3r ! 3r

Doubling r increasec area 9x

Doué//‘ug r increases area Yx

[ripling v increaces area 9x

[vipling r increaces area 9x

With recpect to a given input variable!

Big-O Notation 3

o is a way of quantifying the

e Example:
o A square of side length r has area O (r?).
o A circle of radius r has area O (r?).

A 4A QA

ﬂIG

V=

r
| ———|
2r } | 2r
3r ' 3r '
Doué//‘ug r increases area Yx Doué//‘ug r increaces area Y4x

Tripling r increaces area 9x [ripling r increaces area 9x

Efficiency Categorizations So Far

e Constant Time — O(1)

o Super fast, this is the best we can hope for!
o Euclid's Algorithm for Perfect Numbers

runtime

e Linear Time — O(n)
o This is okay; we can live with this

e Quadratic Time — O(n?)

o This can start to slow down really quickly
o Exhaustive Search for Perfect Numbers

Input size

e How do all the ADT operations we've seen so far fall into these categories?

ADT Big-O Matrix

e \ectors

.size() - O(1)
.add() - 0(1)
v[i] - O(1)
.insert() - O(n)
.remove () — O(n)
.clear() - O(n)
traversal - O(n)}

o O O O O O O

e Grids
o .numRows () /.numCols ()
- 0(1)

ocgl[i][3] - O(1)
O .inBounds () - O(1)
o traversal - O(n?)

o O O O O O

o O O O O O

Queues

.size() - O(1)
.peek () - O(1)
.enqueue () - 0O(1)
.dequeue () - 0O(1)
.isEmpty () - O(1)
traversal - O(n)

Stacks

.size() - 0O(1)
.peek() - O(1)
.push() - O(1)
.pop() - O(1)
.isEmpty () - O(1)
traversal - O(n)

Sets

.size() - O(1)
.isEmpty () - O(1)
.add() - 2?2
.remove () — 2?2?27
.contains () - ?°?°?

traversal - O(n)

Maps

.size() - O(1)
.isEmpty () - O(1)

m[key] - ?°?°?

.contains () - ?°?°?
traversal - O(n)

What is recursion?

Activity: Vee

https://scratch.mit.edu/projects/409796637/

This code creates a “vee” shape with random colors.

define vee define draw a branch V

switch costume to color

< L

Based on lfee by Dan Garcia

Discuss in breakout rooms: What will this code do?

define vee draw a branch

Discuss in breakout rooms: What will this code do?

define vee define draw a branch

MNotice the
differences

-

Demo: Recursive Vee

()

https://scratch.mit.edu/projects/409785610/editor/

What is recursion?

Wikipedia: “Recursion occurs when a thing is defined in terms of itself.”

Go gle recursion X $ Q

Q All] Books [&) Images [) Videos [E) News { More Settings Tools

About 33,900,000 results (0.53 seconds)

Did you mean: recursion

recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
tasks of the same form.

What is recursion?

e A powerful substitute for iteration (loops)

o We’ll start off with seeing the difference between iterative vs. recursive
solutions

o Later in the week we’ll see problems/tasks that can only be solved using
recursion

What is recursion?

e Results in elegant, often shorter code when used well

What is recursion?

e Often applied to sorting and searching problems and can be used to express
patterns seen in nature

What is recursion?

e A powerful substitute for iteration (loops)
o We’ll start off with seeing the difference between iterative vs. recursive
solutions
o Later in the week we’ll see problems/tasks that can only be solved using
recursion

e Results in elegant, often shorter code when used well

e Often applied to sorting and searching problems and can be used to express
patterns seen in nature

e Will be part of many of our future assignments!

How many students
are in a lecture hall?

A [non-COVID] analogy

How many students are in the lecture hall?

e Let’s suppose | want to find out how many people are at lecture today, but |
don’t want to walk around and count each person.

e | want to recruit your help, but | also want to minimize each individual’s amount

of work.

How many students are in the lecture hall?

e Let’s suppose | want to find out how many people are at lecture today, but |
don’t want to walk around and count each person.

e | want to recruit your help, but | also want to minimize each individual’s amount
of work.

We can colve this problem recumive/y/

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column™?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:

m If someone is sitting behind me:

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.

o Student’s algorithm:
m If there is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column”?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:

m If someone is sitting behind me:

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.

e Ask that person: How many people
are sitting directly behind you in your
“column™?

e When they respond with a value N,
respond (N + 1) to the person who
asked me.

How many students are in the lecture hall?

e We’'ll focus on solving the problem for single “column” of students.
o | goto the first person in the front row and ask: “How many people are sitting directly behind
you in your ‘column’?”
o Student’s algorithm:
m Ifthere is no one behind me, answer O.
m If someone is sitting behind me:
e Ask that person: How many people
are sitting directly behind you in your
“column™?
e When they respond with a value N,
respond (N + 1) to the person who
asked me.

e (Can generalize to the entire lecture halll

recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
tasks of the same form.

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

“TF there i no one behind me, answer 0.”

Two main cases (components) of recursion

® Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
o Cannot be answered directly
Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

Two main cases (components) of recursion

® Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
o Cannot be answered directly
Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

“TF someone is citting behind me... ”

Two main cases (components) of recursion

e Base case
o The simplest version(s) of your problem that all other cases reduce to
o An occurrence that can be answered directly

e Recursive case
o The step at which you break down more complex versions of the task into smaller
occurrences
o Cannot be answered directly
Take the “recursive leap of faith” and trust the smaller tasks will solve the problem

for you!

Announcements

Announcements

e Assignment 2 is due Wednesday, 7/8.
e Assignment 3 will be released by the end of the day on Thursday.

e The mid-quarter diagnostic will cover through the end of this week (Thursday
will be the last day of content covered).

e Please remember to only ask questions in the chat that are necessary for your
immediate understanding!

Factorial example

Factorials

e The number , denoted n!, is

Factorial slides based on an example by Keith Schwarz

Factorials

e The number

e Forexample,

o 3!' =3 x 2 x1
o 4' =4 x 3 x 2
o 5! =5 x4 x 3
o) 1. (by definition)

0!

X

, denoted
6.

1= 24.

2 x 1 = 120.

S

Factorials

e The number , denoted n!, is

e Forexample,
o 3! =3 x2x1=26.
O 4! =4 x 3 x 2 x 1 = 24.
o 5! =5 x4 x 3 x 2 x 1 =120.
o 0! =1. (by definition)
e F[actorials show up in unexpected places. We’ll see one later this quarter when

we talk about sorting algorithms.

Factorials

e The number , denoted n!, is

e Forexample,
o 3! =3 x2x1=26.
O 4! =4 x 3 x 2 x 1 = 24.
o 5! =5 x4 x 3 x 2 x 1 =120.
o 0! =1. (by definition)
e F[actorials show up in unexpected places. We’ll see one later this quarter when
we talk about sorting algorithms.

e Let'simplement a function to compute factorials!

Computing factorials

51 =5 x4 x 3 x2x1

Computing factorials

5/ = 5 x

Computing factorials

5/ = 5 x

Computing factorials

5/ = 5 x

Computing factorials

5! = 5 x 4!

Computing factorials

5! = 5 x 4!
4' = 4 x 3 x 2 x 1

Computing factorials

5! = 5 x 4!
41

4 x

Computing factorials

5! = 5 x 41
4 x

. J

41

Computing factorials

5! = 5 x 4!
41

4 x

Computing factorials

5! = 5 x 4!
4' = 4 x 3!

Computing factorials
5! =5 x 4!

4' = 4 x 3!
3 x2x1

3!

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
3 x

3!

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
31 3 x

. J

N

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
3 x

3!

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
3 x 2!

3!

Computing factorials

5! = 5 x 4!
4' = 4 x 3!
3! = 3 x 2!

21

2 x 1!

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! =1 x 0!

Computing factorials

5! = 5 x 4!

4! = 4 x 3!

3! = 3 x 2!

2! = 2 x 1!

1! =1 x 0!
1

Computing factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1' =1 x 0! By definition!
0! 1 <

Another view of factorials

' 1 if n =20
n! =
n x (n—1)! otherwise

Another view of factorials

1 iftn =0

n x (n—1)! otherwise

n! =

int factorial (int n
if (n 0
return 1
else
return n factorial (n-1

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {
int n = factorial (5);

return 0;

cout << "5! = " K< n << endl;

Thisisa“ . One gets
created each time a function is called.
- The “stack” is where in your
computer’s memory the
information is stored.
- A “frame” stores all of the data
(variables) for that particular
function call.

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {

if (n == 0) {
return 1;
} else {
return n * factorial (n-1);

int factorial (int n) { ' When a function gets called, a new
el S stack frame gets created.
N

}

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

}

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

} 5

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n *| factorial (n-1);

} 5

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) {

} if (n == 0) {
return 1;
} else {

}

T T
]
n

return n * factorial(n-1);

Every time we call factorial(),
we get a new copy of the local
variable n that’s independent

of all the previous copies because
it exists inside the new frame.

<

Recursion in action

int main() {

int factorial (int n) {

} if (n == 0)] {
return 1;
} else {
} return n * factorial (n-1);

}

int factorial (int n) { —
s |
n

Recursion in action

int main() {

int factorial (int n) {

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

}

int factorial (int n) { —
s |
n

Recursion in action

int main() {

int factorial (int n) {

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

}

int factorial (int n) { —
s |
n

Recursion in action

int main() {

int factorial (int n) {

} if (n == 0) {
return 1;
} else {
} return| n |* factorial (n-1);

}

int factorial (int n) { —
s |
n

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return| n |* factorial (n-1);

} 4

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 4

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

if (n == 0) {
return 1;
} } else {

}

P — TN
{5]
N

} return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

if (n == 0) {
return 1;
} } else {

}

P — TN
{5]
N

} return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

if (n == 0) {
return 1;
} } else {

}

P — TN
{5]
N

} return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

if (n == 0) {
return 1;
} } else {

}

P — TN
{5]
N

} return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

if (n == 0) {
return 1;
} } else {

}

P — TN
{5]
N

} return | n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

} 3

P — TN
{5]
N

if (n == 0) {
return 1;
} } else {
} return n * [factorial (n-1);

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { .E.
int factorial (int n) { e
return 1;
} } else { N
} return n|* factorial(n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n|* factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { IE.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { IE.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) 1 (n = 0)] { l
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { IE.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { IE.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1) ;
}
}

Recursion in action

int main() {

int factorial (int n) { IE.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
}
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
} 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * [factorial (n-1);
} 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { |
} int factorial (int n) {
) if (n =10 | ﬂl
return 1;
} } else { n
} return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E_.
int factorial (int n) { Py — T
} int factorial (int n) { |
} int factorial (int n) {
) Lf (n == 0) 4 ﬁl
return 1;
} } else { n
} return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { f—
}
int factorial (int n) { ._E_.
int factorial (int n) { Py — T
} int factorial (int n) { |
} int factorial (int n) {
) if (n ==10) ﬁl
return 1;
} } else { n
} return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ..E..
} int factorial (int n) { P — W
int factorial (int n) {
S — aduha Stack frames go
in actoria int n
: P — T away (get cleared
int factorial (int n) { B — from memory) once
} int factorial (int n) { they return.
I 1
return 1;
} } else { n
} return n * factorial(n-1);
}

}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * [factorial (n-1);
} 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * [factorial (n-1);
} 1 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
} 1 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
} 1 X 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { Py — T
} int factorial (int n) { —
) i (n ==0) { l
return 1;
} } else { n
} return n * factorial (n-1);
}
1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial(n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial(n-1);
} 2 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
} 2 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { n
} return n * factorial (n-1);
} 2 X 1
}

Recursion in action

int main() {

int factorial (int n) { ._E_.
int factorial (int n) { P —
}
int factorial (int n) { ._E.
int factorial (int n) { e
return 1;
} } else { N
} return n * factorial (n-1);
} 2
}

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

} 3

P — TN
{5]
N

if (n == 0) {
return 1;
} } else {
} return n * [factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

} T — TN
int factorial (int n) { —
return 1;
} } else { n
} return n * [factorial (n-1);
} 3 2
}

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

} T — TN
int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
} 3 2
}

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

} T — TN
int factorial (int n) { —
return 1;
} } else { n
} return n * factorial (n-1);
} } 3 X 2

Recursion in action

int main() {

int factorial (int n) {

T — 13

int factorial (int n) {

int factorial (int n) {

}

6

P — TN
{5]
N

if (n == 0) {
return 1;
} } else {
} return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 4

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 4 6

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 4 6

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 4 X 6

Recursion in action

int main() {

int factorial (int n) {

int factorial (int n) { —
s |
n

} if (n == 0) {
return 1;
} else {
} return n * factorial (n-1);

} 24

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n *| factorial (n-1);

} 5

Recursion in action

int main() {

int factorial (int n) {
if (n == 0) {
return 1;
} else {

} 5

24

{s]
n

return n *| factorial (n-1);

Recursion in action

int main() {

int factorial (int n) {
if (n == 0) {
return 1;
} else {

} 5

24

{s]
n

return n * factorial (n-1);

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

} 5 X 24

Recursion in action

int main() {

int factorial (int n) { —
n

return 1;
} else {
return n * factorial (n-1);

} 120

Recursion in action

int main() {
int n = factorial (5);

cout << "5! = " K< n << endl;
return 0;

Recursion in action

int main() {

int n = factorial (5) ; '
cout << "5! = " << n << endl;
n

return 0;

Recursive vs. lterative

[Qt Creator]

Reverse string example

How can we reverse a string?

Suppose we want to reverse strings like in the following examples:
“dog” = “god”
“stressed” = “desserts”
“recursion” = “noisrucer”
“level” » “level”

[13 ” [13 ”

a = a

Approaching recursive problems

e ook for self-similarity.

e Try outan example.
o Work through a simple example and then increase the complexity.
o Think about what information needs to be “stored” at each step in the
recursive case (like the current value of n in each factorial stack frame).

e Ask yourself:

o What is the base case? (What is the simplest case?)
o What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:
What are the base and
recursive cases?

(breakout rooms)

How can we reverse a string?

e Look for self-similarity: stressed » desserts

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e What's the first step you would take to reverse “stressed”?

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”.

o Take the d and put it at the end of the string.

({1%4)

O . reverse "7 =» get

(1%}

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?
e Take the s and put it at the end of the string.
e Then reverse “tressed”:
o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”:

o Take the d and put it at the end of the string.

({1%4)

O . reverse "7 =» get

(1%}

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?

o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
“” > get

(1%}

o Base case: reverse

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?

o Take the t and put it at the end of the string.
o Then reverse “ressed”:
m Take therand put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
0 Base case: reverse “7 » get

(1%}

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?
e reverse(“stressed”) = reverse(“tressed”) + ‘s’

m Take therand put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
0 Base case: reverse “7 » get

(1%}

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?
e reverse(“stressed”) = reverse(“tressed”) + ‘s’

m Take ther and put it at the end of the string.
m Thenreverse “essed”:
o ..
o Take the d and put it at the end of the string.
o Base case: reverse “” = get

({134

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?
® reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + ‘¥’

o Take the d and put it at the end of the string.
o Base case: reverse “” = get

({134

How can we reverse a string? How can we

exprecs the
e Look for self-similarity: stressed » desserts recurcive cace?
® reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + ‘¥’

o Take the d and put it at the end of the string.
= get

€ (1%

o Base case: reverse

How can we reverse a string?

e Look for self-similarity: stressed » desserts
e reverse(“stressed”) = reverse(“tressed”) + ‘s’
o reverse(“tressed”) = reverse(“ressed”) + t’

m reverse(“ressed”) = reverse(“essed”) + °r’
o

({134

o Base case: reverse(”) =

How can we reverse a string?

® Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
e Base case: reverse(*”) =

(1%}

How can we reverse a string?

e Recursive case: reverse(str) = reverse(str without first letter) + first letter of str
e Base case: reverse(*”) ="

Depending on how you thought of the problem, you may have also come up with:

e Recursive case: reverse(str) = last letter of str + reverse(str without last letter)
e Base case: reverse("”) ="

Let’s code it!

(live coding)

Summary

Summary

e Recursion is a problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.
o Arecursive operation (function) is defined in terms of itself (i.e. it calls itself).

Summary

® Recursion has two main parts: the base case and the recursive case.

o Base case: Simplest form of the problem that has a direct answer.
o Recursive case: The step where you break the problem into a smaller, self-similar task.

Summary

e The solution will get built up as you come back up the call stack.

o The base case will define the “base” of the solution you’re building up.
o Each previous recursive call contributes a little bit to the final solution.
o The initial call to your recursive function is what will return the completely constructed answer.

Summary

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Summary

e Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

e Recursion has two main parts: the base case and the recursive case.
e The solution will get built up as you come back up the call stack.

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

n
©
i)
O
(©
| -
LL

