Life after CS106B

What are you up to next in life?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids alreys

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic oLl
algorithmic recursive

testing analysis problem-solving

TOday’S What does life after
CS106B look like?

guestion

Course Recap

Today’s
tOpiCS . Future Areas of

Exploration

. Ask Us Anything!

Course Recap

[everything!]

Who were you?

Who were you?

e You spanned 16 different time zones!

Kalaallit
Nunaat

OpenStreetMap contributors. ODbL

Who were you?

e You spanned 16 different time zones!

e You ranged from high school students to career professionals!

Where are you at in life?
SCPD Student g

4.6% e

College Senior

4.2%

College Junior

3.2%

Professional School...
4.2%

High School Sopho...
2.3%

College Freshman
4.2%

Graduate Student
28.7%

High School Junior
13.9%

High School Senior
22.7%

College Sophmore
9.3%

Who were you?

e You spanned 16 different time zones!

e You ranged from high school students to career professionals!

e You had really interesting interests and backgrounds!

w

Our learning goals for the quarter

| am excited to use programming to solve real-world problems | encounter
outside class.

| recognize and understand common abstractions in computer science.

| can identify programmatic concepts present in everyday technologies
because | understand how computers process and organize information.

| can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

| can evaluate design tradeoffs when creating data structures and algorithms

or utilizing them to implement technological solutions.

What you've learned this quarter

You've learned... e C(lasses and Object-Oriented Programming
e (C++ fundamentals (types, structs, pass by e Dynamic memory and pointers

value/reference) e Arrays and linked data structures (trees,
Good testing practices linked lists, graphs)
Console programs and C++ strings e Binary heaps
ADTs: Vectors, Queues, Stacks, Maps, e Sorting algorithms (mergesort, quicksort,
Sets, Priority Queues, HashMaps, selection sort, insertion sort)
HashSets e Binary trees and Huffman encoding trees
Breadth-First and Depth-First Search e Hashing
Big-O notation and algorithmic analysis e Parallel computing
Recursion: Recursive problem-solving, e Abstractions!

fractals, backtracking

What you’'ve made this quarter

Assignment 1. C++ legs

Blogs - Bookmark/Share - Contact Us

Search Archives.gov

RESEARCH OUR RECORDS VETERANS! SERVICE RECORDS EDUCGATORRESQURGES VISITUS AMERICA'S FOUNDING DOCUMENTS

Research Our Records

Home > Research Our Records > Census Records > Soundex System

e Soundex System

About Census Records

Search Census Records Online "
1940 Census The Soundex Indexing System
1930 Census FAQs

1850-1930 Census Clues Updated May 30, 2007

1790-1840 Census Clues
Nonpopulation Census

To use the census soundex to locate information about a person, you must know his or her full name
and the state or territory in which he or she lived at the time of the census. It is also helpful to know
the full name of the head of the household in which the person lived because census takers recorded

1935 Business Census
Indian Census Rolls
Presidents in the US Census information under that name.

Records
The soundex is a coded surname (last name) index based on the way a surname sounds rather than

the way it is spelled. Surnames that sound the same, but are spelled differently, like SMITH and
Resources SMYTH, have the same code and are filed together. The soundex coding system was developed so
that you can find a surname even though it may have been recorded under various spellings.

Census Links by Year

Soundex Coding System
Blank Census forms and charts To search for a particular surname, you must first work out its code.
Order Census Copies Online

RN meaet e S g

Assignment 2: Fun with Collections

YL) <+

« -

) %

Search

Go

Assignment 3: Recursive Problem-Solving

Assignment 4: Priority Queue

This tool displays the strongest recent earthquakes reported by the US Geological Survey
You can use the controls on the side of the window to select the time interval you're
interested in. This visualizer will show the 5 strongest earthquakes within that interval.

Remember that the earthquake magnitude scale is logarithmic. An earthquake that is on
magnitude in strength higher than another releases around 32 times as much energy.

B Magnitude 7.5 115km ESE of Palora, Ecuador at 02:17:22 AM on Feb 22, 2019
m Magnitude 7 27km NNE of Azangaro, Peru at 12:50:41 AM on Mar 01, 2019

Magnitude 6.4 116km SE of L'Esperance Rock, New Zealand at 07:46:14 AM on
Mar 06, 2019

a Magnitude 6.4 49km NW of Namatanai, Papua New Guinea at 06:35:55 AM on Feb
17, 2019

Magnitude 6.2 Northern Mid-Atlantic Ridge at 11:57:05 AM on Feb 14, 2019

Assignment 5: Linked Lists and Sorting

Input Array, select pivot=14 and rearrange elements

14 12 16 13 11 15

Elements less than pivot(14) Elements greater than pivot(14)

12 13 1 16 15 First Partition

Elements less than pivot(12) | Elements less than pivot(12) Elements less than pivot(16)No elements greater than pivot (16)

1 13 15 Second Partition

11 12 13 14 15 16 Final Sorted Array

Assignment 6: Huffman Encoding

Questions you can start to answer

e What is possible with technology and code? What isn’t possible?

e How can | use programming to solve problems that | otherwise would not be

able to?

e What makes for a “good” algorithm or data structure? Why?

What does life look like after
CS106B?

Computer science is more than just
programming!

Computer science is more than just
programming!

These skills will make you better at whatever
you choose to do in life!

What can | study within
computer science?

(concentrations within CS)

Concentrations in computer science (at Stanford)

e Artificial Intelligence
Possible applications for Artificial Intelligence

& i ¥ 9«

Natural language Deep Learnlng Simulation
Virtual Personal processmg Modelling Machine
Assistant \ / Translation
® — @ X
Visualization

Social Network

Artificial Intelllgence Analysis
@ —
Audio Analytics N
o S\
ol g @Q @

Graph Analytics Image Analytics Internet of Robotics & Mach[ne
Things Soft Robotics Learning

source statista via @mikequindazzi

Concentrations in computer science (at Stanford)

e Artificial Intelligence
e Biocomputation

Concentrations in computer science (at Stanford)

e Artificial Intelligence
e Biocomputation
e Computer Engineering

Concentrations in computer science (at Stanford)

Artificial Intelligence
Biocomputation
Computer Engineering
Graphics

Concentrations in computer science (at Stanford)

Artificial Intelligence
Biocomputation
Computer Engineering
Graphics

“Element: Heading, level 2.
Content: Project 2.
Text alignment: left.

Human-Computer Interaction

Concentrations in computer science (at Stanford)

a %

e Artificial Intelligence -
e Biocomputation °.lf.

. . AN J B *,
e Computer Engineering E‘
e Graphics AN
e Human-Computer Interaction
e Information

Concentrations in computer science (at Stanford)

Artificial Intelligence

° Request/Response
e Biocomputation
e Computer Engineering Data Replication
e Graphics
: Local Store
° - ' .
Human-Computer Interaction ey secondary G o
e Information
e Systems
DiskStore
Table Server

Concentrations in computer science (at Stanford)

Artificial Intelligence
Biocomputation

Computer Engineering
Graphics

Human-Computer Interaction
Information

Systems

Theory

What should | study
next?

(based on areas you expressed interested in!)

The CS Core (at Stanford)
CS106B CS103

. Mathematical
Programmin
9 9 > Foundations of

Abstractions Comisuiing

v v

£ CS107 CS109 =
M
% Computer Organization) Intro to Probability o
Y and Systems for CS <
CS110 CS161
Principles of Design and Analysis
Computer Systems of Algorithms

The CS Core (at Stanford)
CS106B CS103

. Mathematical
Programmin
9 9 > Foundations of

Abstractions Comisuiing

v v

£ CS107 CS109 =
M
% Computer Organization) Intro to Probability o
Y and Systems for CS <
CS110 CS161
Principles of Design and Analysis
Computer Systems of Algorithms

The CS Core (at Stanford)
CS106B CS103

. Mathematical
Programmin
9 9 > Foundations of

Abstractions Comisuiing

v !

4
£ CS107 CS109 ,=_g"
% Computer Organization) Intro to Probability o
Y and Systems for CS <
CS110 CS161
Principles of Design and Analysis
Computer Systems of Algorithms

- CS103

121 R

Mathematical Foundations
of Computing

Important Ideas in CS103

e Some infinities are bigger than other infinities, and this has practical
consequences.

e Tropes from Ancient Greek mythology can be made mathematically rigorous to
prove limits on computing power.

e Abstract models of computation have applications in network drivers, user
interfaces, compiler design, and text processing.

CS107: Computer Organization and Systems

Important Ideas in CS107

e The nature of memory layout explains why computer security is so hard to get
right.

e Computers are physical devices whose inner workings are visible even in
higher-level languages.

e Compilers can sometimes rewrite recursive functions iteratively, giving you the
best of both worlds.

CS109: Intro to Probability for Computer Scientists

e Why are hash tables fast? Why are random binary search trees probably good?

e How do we encode data so that if bits get flipped in transit, the message still
arrives?

e How do | explore big data sets and make sense of them?

e What is this whole machine learning thing, how does it work, and how do | do
it?

Other CS Courses

CS193: Practical Programming Technologies

e Many offerings throughout the year, focused on specific technologies:
CS193A: Android Programming

CS193C: Client-Side Web Technologies

CS193l: iOS Programming

CS193P: iPhone and iPad Programming

CS$193Q: Accelerated Intro to Python

o O O O

@)

e Great for learning particular technologies

CS106L: Stanford C++ Programming Lab

e Explore what C++ programming looks like outside of CS106B.

e Get exposure to the standard libraries and some really, really cool techniques
beyond what we saw here.

e Excellent next step if you'd like to work in C++ going forward.

CS147: Intro to Human-Computer Interaction

e How do you design software to be usable?
e What are the elements of a good design?

e How do you prototype and test out systems?

e Prerequisite: CS106B!

Areas you asked about!

e Graphics: CS148, CS248
o Augmented Reality (AR): COMM 280
o Languages/technologies: OpenGL, C++ (!)

e Artificial Intelligence: CS221, CS229, CS231N, CS224[N|UIW]
o Technologies: TensorFlow, PyTorch, GCP/AWS/Azure

e Systems (compilers, memory, parallel programming): CS140, CS149, CS143
o Languages: C, C++, Go, Rust

e Building websites/web programming: C5142, CS193X
o Languages: HTML, CSS, JavaScript, SQL
o Technologies: React, NodeJS, Vue, etc. (but none of these are necessary for getting started!)

Learning Beyond Stanford

e Some online resources (mostly in the form of free courses)
o Codecademy
o Coursera, edX, Udemy, and other MOOCs
o Khan Academy
o MIT Open Courseware

e Strategies for programming self-improvement
o Write lots of code!
o Work on a project you find inspiring
o Find other people to collaborate with
o Join an open-source project!

What should my

academic path look
like?

Thinking about studying more CS?

e Good reasons to think about doing CS:
o | like the courses and what I'm doing in them.
o | like the people I'm working with.
o | like the impact of what I'm doing.

| like the community.

O

e Bad reasons to think about not doing CS:
o I'm good at this, but other people are even better.
The material is fun, but there’s nothing philosophically deep about it.
| heard you have to pick a track, and | don’t know what | want to do yet.
What if 20 years later I'm just working in a cubicle all day and it's not fun and | have
an Existential Crisis?

o O O

The CS Major (at Stanford)

e A common timetable;

o Aim to complete most of the core by the end of your sophomore year (V4/6

classes).

Explore different tracks in your junior year and see which one you like the most.
o Spend your senior year completing it.

e [t’'s okay if you start "late"!

o The latest time you can comfortably start a CS major would be to take CS106A in

winter quarter of sophomore year.
o And the coterm is always an option!

Ask us anything!

Pre-submitted
Questions

What did you struggle with the most in CS106B?

What did you struggle with the most in CS106B?

e Kylie: Big O and recursion
o |lremember taking one 106B exam that asked for the Big O for several of the coding problems,
and | felt like | was guessing on almost every one.

e Nick: Linked Lists

o My partner and | were up until the wee hours of the morning drawing so many pictures of linked
lists, over and over again...

e Trip: Recursion and pointer-related things
o Even now there are recursive problems | look at and say “nope, never would have figured that
one out”

What's your favorite thing about CS and
programming?

What's your favorite thing about CS and
programming?

e Kylie: The computational thinking skills I've gained to better understand the
benefits, limitations, and possibilities of the technology around me.

e Nick: Every 3 months | change my mind about what is interesting and what | want to
do with my life, and yet computer science remains the consistent thread that lets
me pursue so many different ways to have impact. Also | LOVE coding. The process
of writing code is truly so much fun.

e Trip: | love that computer science is a platform for problem-solving. It’s incredibly
dynamic and applicable, so | feel like there are always interesting things to do.

What made you interested in CS?

What made you interested in CS?

e Kylie: My after-school high school robotics team - | was very fortunate to have a female mentor who
encouraged me to go into engineering and has continued to give me advice throughout college.

e Nick: I had an incredibly supportive teacher in high school — he would put so much of his personal
time after school and on weekends to encourage me and my classmates to pursue our interest in CS
and show us all the cool things that we could accomplish. The powerful sense of original creation that
you get when you create a new program or project is also really awesome.

e Trip: 'm not really sure -- | failed the APCS exam in high school, so coming into college | was set on
NOT doing CS. | took 106A and loved it and the idea of section leading so much that | never looked
back. At times | definitely felt like | wasn’t cut for the major, but | slowly convinced myself that | could
do it!

What kind of person should pursue a career in CS?

What kind of person should pursue a career in CS?

e Someone who is interested in designing, making, and/or understanding
technologies for the benefit of others.

e Someone who enjoys theoretical and/or practical problem-solving using
computation.

e A “careerin CS” is so much broader than people often think it is!

e Anyone can pursue a career in CS — you don’t need to be a particular “type” of
person (and the idea that some people are just born “CS-people” is a myth!).

How do the skills we’ve learned translate to how CS
is used in the technology industry?

How do the skills we’ve learned translate to how CS
is used in the technology industry?

Like we said, there are many different jobs in CS.

e Product managers: Understanding how to scale technology (Big O matters!)

e UI/UX Designers: Understanding how a user might interact with your system/software as
an abstraction

e Technical writers: Being able to communicate about technology and software to a
particular audience (your final projects!)

e Data scientists: Recognizing patterns in data and taking advantage of those patterns to
efficiently process and store the info

How can | translate my CS106B skills into Python?

How can | translate my CS106B skills into Python?

e While some of the ADTs we learned in C++ also exist in Python (dicts as maps,
lists as vectors, sets as sets), many would require you to implement them yourself
(queues, stacks, etc.)!

e Python doesn’t enable the low-level memory management and system access
that C++ does — there are no pointers, and you don’t get the choice between

allocating memory on the stack vs. the heap.

o As aresult, creating linked data structures like trees or linked lists would require creating an
entirely new classes for the Nodes class and the linked data structure itself (turning it into more of
an ADT in Python).

e But algorithms like searching/sorting and recursive problem-solving still translate!

Which Stanford courses did you enjoy a lot? Are
there any that changed your lives?

Which Stanford courses did you enjoy a lot? Are
there any that changed your lives?

e Kylie: Educ 236, Educ 208B, English 12A, CS 206, CS 124, C5247

e Nick: History 50B, Africaam 47, CS398

e Trip: CS182W, CS110, History 155F, Music 24 series

Open Q&A

What questions do you have for us?

What's next?

Where are you now?

e You now have a wide array of tools you can use to solve a
variety of problems.

Where are you now?

e You now have a wide array of tools you can use to solve a
variety of problems.

® You have the skills to compare and contrast those solutions.

Where are you now?

e You now have a wide array of tools you can use to solve a
variety of problems.

® You have the skills to compare and contrast those solutions.

® You have expressive mental models for teasing apart those
problems. (abstractions!)

Closing thoughts

e How is the technology we use made and who makes it?

Closing thoughts

e How is the technology we use made and who makes it?

e \Who benefits from the technology?

Closing thoughts

e How is the technology we use made and who makes it?

e \Who benefits from the technology?

e Who might not benefit from the technology?

Closing thoughts

e How is the technology we use made and who makes it?
e \Who benefits from the technology?
e Who might not benefit from the technology?

e \What problems will you choose to solve with technology?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids alreys

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic oLl
algorithmic recursive

testing analysis problem-solving

Thank yau./././

