Linked List Operations

What topic are you interested in investigating for
your final project?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we write code to

Today'’s

examine and manipulate

g uestion the structure of linked lists?

Tod ay’s 1. Review
topics

2. Linked List Traversal

3. Linked List Insertion

Review

[intro to linked lists]

Abstract Data

What is the interface for the user?
Structures

C
O _— e == = _— s =
—
o Data Organization
E How is our data organized? 9 .
4+ Strategies
n
e
(©
G
o What stores our data? Dot Fundamental C++
2 (arrays, linked lists) ointers move Data Storage
) u¢ acrocs this
> |
Q boundary!
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
-+ Strategies
n
e
©
G
o What stores our data? ‘ Fundamental C++
W (,) These are built Data Storage
Q on top of
> .
q) PO“’lfel’f./ ————%————
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O _— —_— _— —_— —_— _— —_— -_—
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
e
©
G
O What stores our data?
7))
— arrays,
O (array)
>
m _— —_— _— —_— —_— _— —_— -_—
—
How is data represented electronically? Computer
(RAM) Hardware

What is a linked list?

e Alinked list is a chain of nodes, used to store a sequence of data.
e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence

o Alink to the next node in the list

e We can traverse the list by starting at the first node and repeatedly following its
link.

e The end of the list is marked with some special indicator.

A linked list!

Data

Link

Data

Link

Data

Link

Cabifornia’

NULLp

The Node struct

struct Node {
string data;
Node* next;

Pointer to a node

|
*
o /
B JOxfca0b000
Z

list

Node* 1list = new Node;
list->data = "someData";
list->next = nullptr;

. Data" Cabiforria’
someData NUL [P

Q¢ .

| |

[he arrow notation (— >) dereferences
AND accesces the field for pointere
that point to structe specifically.

New: Node struct constructor 7he Vode struct alco has a
conveniently defined that

allowe vs fo accomlb//d\ thic in one line.

Californa’
g — "someData" e
'/ T S
2 B

list

Node* list = new Node("someData", nullptr);

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Implementing an ADT using a Linked List

e Alinked list can be the fundamental data storage backing for an ADT in much
the same the same way an array can.

e We saw that linked lists function great as a way of implementing a stack!

e Three operations:

o push() - Listinsertion and list rewiring
o pop() - List deletion and list rewiring
o Destructor — List traversal and list deletion

Important Takeaways

e Linked lists are chains of Node structs, which are connected by pointers.
o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs
o Be careful about the order in which you delete and rewire pointers!
o It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)

Linked List Operations
Revisited

How can we write code to
examine and manipulate the
structure of linked lists?

Linked Lists Reframed

e On Thursday, we saw linked lists in the context of classes, where we used a
linked list as the data storage underlying an implementation of a Stack.

Linked Lists Reframed

e However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

Linked Lists Reframed

e This is the paradigm that we will work under for the next two days. In doing so,
we'll gain a little more flexibility to get practice with many different linked list
operations and build our linked list toolbox!

Linked List Traversal

Printing a Linked List

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the
e First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();
cout << list << endl;

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

e First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();

cout << list << endl; Answer: Some memory address is
printed! We can't predict the exact value.

Inspecting Linked List Contents

e Being able to "see" the contents of a linked list is a really helpful debugging
tool!

e There are two main ways to do so: using the and printing to the

e First attempt (directly printing list pointer) unsuccessful.

e Second attempt: Let's write a function to print the list!

printList()
Let's code it!

How does it work?

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

E Oxab40 '

list

Cobiformia’

"Nick" "Kylie" "Trip" / NUL Lo
- [

int main() {

Node* list = readList();
printList(list);

/* other list things happen... */

E Oxab40 '

list

Cobiformia’

"Nick" "Kylie" "Trip" / NUL Lo
- [

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

P Node"Y

cout << list->data << endl;

}
'
1i::",;:>

n Kylie"

"Trip

&

(-

Califorria’
NULLP™

S .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

P Node"Y

cout << list->data << endl;

}
'
1i::",;:>

n Kylie"

"Trip

&

(-

Califorria’
NULLP™

S .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

P Node"Y

cout << list->data << endl;

}
'
1i::",;:>

n Kylie"

"Trip

&

(-

Califorria’
NULLP™

S .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

P Node"Y

cout << list->data << endl;

Nick

}
'
1i:j",;:>

n Kylie"

"Trip

&

(-

Califorria’
NULLP™

S .

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

Node

cout << list->data << endl;

}
"
1i:j",;:>

Nick

n Kylie"

"Trip

&

(-

Califorria’
NULLP™

S .

int main() {

void printList(Node* list) {

while (list != nullptr) {
cout << list-
list = list->next;

}
'

list

Node*

>data << endl;

Nick

n Kylie"

lir/

Cobiformia’
NUL[P

"Trip" /
(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

}
"

list

Node*

cout << list->data << endl;

Nick

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

}
"

list

Node*

cout << list->data << endl;

Nick

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

}
"

list

Node*

cout << list->data << endl;

Nick
Kylie

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

}
"

list

Node*

cout << list->data << endl;

Nick
Kylie

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() { Nick

void printList(Node* list) { .
while (list !'= nullptr) { Kylie
cout << list->data << endl;

list = list->next;

}
' \
list \

Cobiformia’

"Nick" "Kylie" "Trip" -~ NULLe
e i

(-

int main() { Nick

void printList(Node* list) { .
while (list '= nullptr) { Kylie
cout << list->data << endl;

list = list->next;

}
' \
list \

Cobiformia’

"Nick" "Kylie" "Trip" -~ NULLe
e i

(-

int main() { Nick

void printList(Node* list) { .
while (list !'= nullptr) { Kylie
cout << list->data << endl;

list = list->next;

}
' \
list \

Cobiformia’

"Nick" "Kylie" "Trip" -~ NULLe
e i

(-

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

} }
}
|]
‘o
0x40f0 '
4

list

Nick
Kylie
Trip

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

} }
}
|]
‘o
0x40f0 '
4

list

Nick
Kylie
Trip

n Kylie"

"Trip

&

(-

Cobiformia’
~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

| Iiiill

list

P Node"Y

Nick
Kylie
Trip

n Kylie"

"Trip

&

(-

Cobiformia’

~ NULL#

int main() {

void printList(Node* list) {
while (list != nullptr) {

list = list->next;

cout << list->data << endl;

| Iiiill

list

P Node"Y

Nick
Kylie
Trip

n Kylie"

"Trip

&

(-

Cobiformia’

~ NULL#

int main() { .
Node* list = readList(); N1Ck

printList(list); Kylie
Trip

/* other list things happen... */

E Oxab40 '

list

Cobiformia’

"Nick" "Kylie" "Trip" / NUL Lo
- [

int main() { .
Node* list = readList(); N1Ck

printList(list); Kylie
Trip

/* other list things happen... */

E Oxab40 '

list

Cobiformia’

"Nick" "Kylie" "Trip" / NUL Lo
- [

Measuring a Linked
List

Measuring a Linked List

e Similar to arrays, a linked list does not have the capability to automatically
report back its own "size."

e The following code is NOT valid, since list is simply a pointer

Node* list = readList();
cout << list.size() << endl; // WRONG! BAD!

e Let's write a function that allows us to calculate the number of nodes in a
linked list!

lengthOf ()
Let's code it!

Freeing a Linked List

Freeing Linked Lists

e Linked lists are built out of many different nodes, each of which have been
. This means that when we're done using a list, it is
always good practice to free the memory associated with all the nodes!

Freeing Linked Lists

e Freeing all the nodes requires while safely freeing
everything along the way.

Freeing Linked Lists

e We've actually seen how to do this already! The IntStack destructor that we
coded up together was responsible for cleaning up all the list memory.

Freeing Linked Lists

e Let's revisit how to (and how not to) accomplish this task!

Freeing Linked Lists,
the Wrong Way

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/-E Oxab40 '

list

) Cobiformia’

"Nick" "Kylie" "Trip NULL"TR
- [

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/-E Oxab40 '

list

) Cobiformia’

"Nick" "Kylie" "Trip NULL"TR
- [

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/-E Oxab40 '

list

) Cobiformia’

"Nick" "Kylie" "Trip NULL"TR
- [

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

}
}/' delete

e

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/E Oxab40 '

list

) Cobiformia’

"Kylie" "Trip NULLPTR
a (-

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

while (list != nullptr) {
delete list;
list = list->next;

/E Oxab40 '

list

) Cobiformia’

"Kylie" "Trip NULLPTR
a (-

void freeList(Node*

/* WRONG WRONG WRONG WRONG WRONG */
while (list != nullptr) {
delete list;

list) {

list = list-

>next;

/E Oxab40 '

list

"Kylie"

- il

Cobiformia’

~ NULL#

void freeList(Node* list) {
/* WRONG WRONG WRONG WRONG WRONG */

Undefined

Behavior!

Cobiformia’

NULLP™

"Kylie" / "Trip" /

Freeing Linked Lists,
the Right Way

void freeList(Node* list) {
while (list != nullptr) {

delete list;
list = list->next;

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {

delete list;
list = list->next;

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete 1ist°
list =

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/-E Oxab40 '

list

"Nick" ///////> "Kylie" ///////> "Trip" ‘//////>{ ?ﬁﬁt]}}R
(- (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/— E Oxab40 ' /I Oxbc70 '

list next

"Nick" "Kylie" "Trip" / gﬁfm}‘m
&

Node*

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/— E Oxab40 ' /I Oxbc70 '

list next

"Nick" "Kylie" "Trip" / gﬁfm}‘m
&

Node*

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

} | . |
} E Oxab40 ' I Oxbc70 I
/ list / next

. ﬁaﬂ%ﬂmm

"Kylie" "Trip .Nl] U%R
|i|~/ (-

Node

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

} | . |
} E Oxab40 ' I Oxbc70 I
/ list / next

. ﬁaﬂ%ﬂmm

"Kylie" "Trip .Nl] U%R
|i|~/ (-

Node

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 ' /I Oxbc70 '

list next

] Cobiformia’

"Kylie" "Trip NULLPTR
|i|~/ 118

Node*

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 ' /I Oxbc70 '

list next

] Cobiformia’

"Kylie" "Trip NULLPTR
|i|~/ 118

Node*

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

] Cobiformia’

"Kylie" "Trip NULLPTR
a (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

] Cobiformia’

"Kylie" "Trip NULLPTR
a (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E Oxbc70 '

list

] Cobiformia’

"Kylie" "Trip NULLPTR
a (-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
III!HH!II

list = next;
next

/E Oxbc70 '

list

Node*

"Kymy"//////> "Trip
(Il

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
III!HH!II

list = next;
next

/E Oxbc70 '

list

Node*

"Kymy"//////> "Trip
(Il

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
III!HH!II

list = next;
next

(E Oxbc70 '

list

Node*

"Trip

(-

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
III!HH!II

list = next;
next

(E Oxbc70 '

list

Node*

"Trip

(-

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;
III!HH!II

list = next;
next

/E 0x40f0 '

list

Node*

"Trip

(-

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

] Cobiformia’

~ NULL#

"Trip

(-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

] Cobiformia’

~ NULL#

"Trip

(-

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;

list = next;
list next

/E 0x40f0 '

Node*

"Trip

(-

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;

delete list;

list = next;
list next

/E 0x40f0 '

Node*

"Trip

(-

Cobiformia’

~ NULL#

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list;
list = next;

/E 0x40f0 '

list

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list:
list = next;

/E - ' Iﬂl\

list next

Node*

void freeList(Node* list) {
while (list != nullptr) {
Node* next = list->next;
delete list:
list = next;

/Eﬂl (-

list next

Node*

Cabifornia’

S

void freeList(Node* list) {
while (list != nullptr) {

Node* next = list->next;

delete list;
list = next;

/Eﬂl

list

Cobiformin”

~ NULLP

All memory
freed! Wooo!

Linked Lists and
Recursion

Rethinking Linked Lists

e On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define

Rethinking Linked Lists

e On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define

struct Node {
string data;
Node* next;

Rethinking Linked Lists

e On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define

struct Node {
string data;
Node* next;

e This struct definition gives us some insight into the fact that the overall concept
of a linked list can be expressed recursively.

A Linked List is Either..

Diagram created by Keith Schwarz

A Linked List is Either..

~an emply list,
represenfed by

nullptr, Or..

Diagram created by Keith Schwarz

A Linked List is Either..

.an empty list,
represenfed by
nullptr, Or..
a single linked list . at another linked
cell that points.. list.

Diagram created by Keith Schwarz

Printing a List Revisited

Printing a List Revisited

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

Printing a List Revisited

void printList(Node* list) {
while (list != nullptr) {
cout << list->data << endl;
list = list->next;

void printListRec(Node* list) {
/* Base Case: There's nothing

to print if the list is empty. */
if (list == nullptr) return;

/* Recursive Case: Print the
first node, then the rest of the
list. */

cout << list->data << endl;

printListRec(list->next);

Pitfalls of Recursive List Traversal

e Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy...

Pitfalls of Recursive List Traversal

e Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

Pitfalls of Recursive List Traversal

e What is the stack frame limit on most computers?
o You explored this on assignment 3 — for most computers it is somewhere in the range of 16-64K

Pitfalls of Recursive List Traversal

e With a recursive strategy, the size of the list we're able to process is limited by
the stack frame capacity — we can't process lists longer than 16-64K elements!

Pitfalls of Recursive List Traversal

Jakeaway: Any linked list operations
involving traversal of the whole list are
better done { This holds ecpecially
true on the ascignment — don't try to
implement any of the fict helper functions

recursively!

Linked List Traversal Takeaways

e Temporary pointers into lists are very helpful!
o When processing linked lists iteratively, it's common to introduce pointers that point to cells in
multiple spots in the list.
o This is particularly useful if we’re destroying or rewiring existing lists.

e Using awhile loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

e lterative traversal offers the most flexible, scalable way to write utility functions
that are able to handle all different sizes of linked lists.

Announcements

Announcements (Part 1)

e Revisions for Assignment 3 opened today and will be due on Thursday, July
30 at 11:59pm PDT.

e Assignment 4 is due tonight at Monday, July 27 at 11:59pm PDT.

e Assignment 5 will be released by the end of the day tomorrow and will be due
on Tuesday, August 4 at 11:59pm PDT.

Announcements (Part 2)

e Nick’s and Kylie's group office hour times this week will be slightly modified.
o Kylie will be hosting group OHs from 2-3:30pm PDT on Monday (today!).
o Nick will be hosting group OHs from 12:30-3pm PDT on Tuesday.

e Come talk to us about your ideas for the final project during office hours!

e Diagnostic grades were released earlier today. Overall, everyone did really
welll Regrade requests are now open through Gradescope and must be

submitted by Wednesday, July 29 at 11:59pm.
o These requests should only be submitted if you think the posted criteria has been
misapplied to your submission, not if you think the criteria are unfair.

Announcements (Part 3)

e Common diagnostic questions: What letter grade did | get? Is it curved?
o We don’t want you to think about this as an exam! There won’t be a curve so you can think of
the 45 total points as making up the 10% of your overall grade.
o BUT since the emphasis for the diagnostic was to help you understand areas for improvement,
we’re also going to give you opportunities to demonstrate growth and make up part of that 10%.

e You can receive the points back for one problem of your choice by showing

that you’ve mastered that concept through your final project.
o You don’t have to only focus on that topic in your project, but it should be incorporated into the
problem you design.
o Deliverable: As an add-on to the final project write-up, you'll include a section titled “Diagnostic
Reflection” that discusses how you improved in that topic, how your final project demonstrates
your improvement, and how you would now approach the diagnostic problem differently from a
problem-solving standpoint (this does not mean reproducing the correct solution!).

Linked List Insertion

Insertion at the front
(prepend)

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

|
E Oxab40 '

list

) Cobiformin”

"Nick" "Kylie” "Trip -~ NULLe
- [

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

|
E Oxab40 '

list

"Julie" "Nick" / "Kylie" / "Trip" / aﬁﬁfﬁm
(i | |n ()

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a
linked list.

—
E 0x26b0 '

list

"Julie" / "Nick" / "Kylie" / "Trip" / gﬁ&ﬁaﬁ}},‘
- (-

Prepending an Element

® Suppose we wanted to write a function to insert an element at the front of a

linked list.
e This is similar to the push() function we implemented on Thursday, but now

we're writing a standalone function to do this on an arbitrary list. Let's code it!

—
E 0x26b0 '

list

"Julie" "Nick" "Kylie" "Trip" L NULLp™
e [

prependTo()
Let's code it!

What went wrong?

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

(Cabiforria’

NULLp

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
"Trip"

list data

ik /

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
"Trip"

list data

ik /

int main() {

Node* lis;]
= void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;

list;

newNode->next
ﬂ' list = newNode;
= E ﬂ ' E . ' % '
0x40f0 "Tri p"

list newNode data

(T £)

NULLP @

~ -

int main() {

Node* 1is;)
1 void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;

list;

newNode->next
ﬂ' list = newNode;
= E ﬂ ' E . ' % '
0x40f0 "Tri p"

list newNode data

(T £)

NULLP @

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

T / "Trip"
N

) 4
"@
3 -

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

T / "Trip"
N

) 4
"@
3 -

~ -

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

"Trip"

(Collifornia’

NULLp (6

int main() {

N * 1is] : :
pggsend;Z void prependTo(Node* list, string data) {
prependTo Node* newNode = new Node;

prependTo newNode->data = data;

return 0;

list;

newNode->next
ﬂ' list = newNode;
list y
0x40f0 "Trip"

list newNode data

"Trip"

(Collifornia’

NULLp (6

int main() {
Node* lis;]]
void prependTo(Node* list, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
return 0;
newNode->next = list;
list = newNode;
}
0x40f0 0x40f0 "Trip"
list newNode data

"Trip"

(Califorria’

NULLPTR 'il

int main() {

Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

|

Cotiformia’

NULL™ =

"Trip"

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

(Califorria’

NULL™ =

| just got
yeeted into
the land of
leaked

memory...

"Trip

Pointers by Value

e Unless specified otherwise, function

pointer in —
arguments in C++ are passed by main

value — this includes pointers!

e A function that takes a pointer as an
argument gets a copy of the

, pointer in
pointer. function l '7

e We can change where the copy
points, but not where the original
pointer points.

Pointers by Reference

Pointers by Reference

e To solve our earlier problem, we can

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(Node*& list, string data) {
Node* newNode = new Node;
newNode->data = data;

newNode->next = list;
list = newNode;

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(, string data) {
Node* newNode = new Node;
newNode->data = data;
newNode->next = list;

Pointers by Reference

e To solve our earlier problem, we can

e Qur new function:

void prependTo(, string data) {
Node* newNode = new Node;
newNode->data = data;
TA/S’ s a
newNode->next = list; IF we change where list
} pointe in thic function, the
changes will ctick!

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

list

(Cabiforria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEE3d, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
data

(Califorria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEEJd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
data

(Califorria’

NULLp

int main() {
Node* lis; .]
void prependTo (Ll WEEJd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
newNode data

N &
NULE =

a %
%y e - -
=

int main() {
Node* lis; .]
void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
ret rn 9;
- newNode->next = list;
list = newNode;
}
newNode data

N &
NULE =

a %
%y e - -
=

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
(NUL[P™ @

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
(NUL[P™ @

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
N+ (il

int main() {
Node* lis;]
1 void prependTo (Ll WEERd, string data) {
prependTo
Node* newNode = new Node;
prependTo
newNode->data = data;
prependTo
t 0;
re — newNode->next = list;
list = newNode;
}
newNode data
"Trip"
Colliforria’
N+ (il

int main() {
Node* lisj]
ode® lis void prependTo (Ll WEERd, string data) {
prependTo

Node* newNode = new Node;

rependTo
greﬁendTo newNode->data = data;
return O; .
newNode->next = list;

list = newNode;

'
]
list E 0x40f0 ' % "Trip" '

newNode data

"Trip"

[NULLPTR - 'il

int main() {
Node* list = nullptr;
prependTo(list, "Trip");
prependTo(list, "Kylie");
prependTo(list, "Nick");
return 0;

0x40f0 '

list

"Trip"

(NULLPTRf g ()

int main() {

Node* list = nullptr; | am no longer
prependTo(list, "Trip"); lost — Yee
prependTo(list, "Kylie"); Haw!
prependTo(list, "Nick");

return 0;

=

list

"Trl p"

(NULL"TR‘ e (i

Pointers by Reference Summary

e If you pass a pointer into a function by value, you can change the contents at
the object you point at, but not which object you point at.

e If you pass a pointer into a function by reference, you can also change which
object is pointed at.

e When passing in pointers by reference, be careful not to change the pointer
unless you really want to change where it’s pointing!

Insertion at the end
(append)

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

list

"Nick" / "Kylie" / "Trip" / aﬁ&ﬁoﬁ}'m
(- (- (-

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a

linked list.
"Julie"
E Oxab40 ' li'

list

"Nick" / "Kylie" / "Trip" / aﬁ&ﬁoﬁ}'m
(- (- (-

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

, (-
= . | { WM?

"Nick" / "Kylie / "Trip NULLPTR
| [} - (-

"Julie"

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

|
E Oxab40 '

. (-
= § | { WM>

"Nick" / "Kylie / "Trip NULLPTR
(- (- (-

1. Create a cell whose
next field is nullptr.

"Julie"

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a
linked list.

1. Create a cell whose
next field is nullptr.
2. Find the last cell in the

n s n
p— list. Julie
E Oxab40 ' lil\

list
"Nick" / "Kylie" / "Trip" { aﬁﬁﬁ}})
(- (- (-

Appending an Element

® Suppose we wanted to write a function to add an element to the end of a

linked list.
1. Create a cell whose
next field is nullptr.
2. Find the last cell in the e
p— list. Julie
Oxabd 3. Change where the last
cell points. lil‘
list
) { Cobiformin’

"Nick" / "Kylie" / "Trip NULLPTR
- - (-

appendTo()
Let's code it!

appendTo() Takeaways

e Appending to the end of a linked list has a lot of tricky edge cases!
o We must pass the pointer by reference to account for the case where we're adding
to an empty list and need to update the head pointer.
o We have to be careful about our while loop condition to make sure that we never
dereference a null pointer!

o We have to be careful with our usage of pointers by reference and make sure to
maintain a local iterator pointer to traverse the list.

e Being able to reason about all of these cases becomes much easier if we draw out
diagrams and carefully trace the values of different pointers over time.
o Note: Check out slides 56-124 of for visualizations of the right and
wrong ways of coding up the append function!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/21/Slides21.pdf

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

e Answer: 0 (n), where nis the number of elements in the list, since we have to
find the last position each time.

Unresolved Issue

e What is the big-O complexity of appending to the back of a linked list using our
algorithm?

e Answer: 0 (n), where nis the number of elements in the list, since we have to
find the last position each time.

e This seems suspect — O (n) for a single insertion is pretty bad! Can we do

better?
o Find out tomorrow!

Summary

Summary

e Linked lists can be used outside classes - you’ll do this on Assignment 5!

e Think about when you want to pass pointers by reference in order to edit the
original pointer and to avoid leaking memory.

e We can add to a linked list by either prepending or appending.
o Prepending is faster but results in a reversed order of items (things added earlier

are at the back of the list)
o Appending (as we’ve learned so far) requires traversing all items but maintains

order (things added earlier are at the front of the list)

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

~inish up Linked
_ists and start
ntro to Sorting!

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LisT):
IF LENGH(LIST) < 2:
RETORN LST
PIOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE S0RT (LIST(: PNOTJ;
B = HALFHEARTEDMERGE SORT (LIST [PvoOT:]
// uMmMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMIZED BOGOSORT
// RONS N O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF 1550RTED (LIST):
REORN LiST
RETURN “KERNEL PAGE FRULT (ERROR (PDE: 2)"

DEFINE JOBINERVEWQUICKSORT(LIST):
0K 50 YOU CHOOSE A PIVCT
THEN DIVDE THE LIST IN HALF
FOR EACH HALF:
CHECK To SEE IF IT SORED
NO WAIT, ITDOESN'T MATIER
COMPRRE EACH ELEMENT To THE PVOT
THE BIGGER ONES GO IN ANEBW (ST
THE EQUAL ONES GO INTO, UH
THE SELOND LIST FROM BEFORE
HANG ON, (ET ME NAME THE USTS
THIS IS UST A
THE NEW ONE IS LIST B
PUT THE BIG ONES INTO UIST B
NOW TAKE THE SECOND LIST
CALL IT LiST;, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSVELY CAUS ITSELF
UNTIL BOTH LIST5 ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T0 USE THE STRNDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF ISSORTED (LIST):
RETURN LIST
FOR N FROM 1 To 10000:
PIVOT =RANDOM (0, LENGTF (LisT))
UST = LSt [PvoT: 1+ LIST [:PIvoT]
IF ISSORTED(LIST):
RETURN UsT
IF [SSORTED(LIST):
RETURN UST:
IF 1SS0RTED(LIST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF 15S0RTED (LIST)2 // COME ON COME ON
RERN UST
// OH JEEZ
// TM GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5)
SYSTEM (“RM —RF /™)
SYSTEM ("RM -RF ~/#")
SysTEM("RM -RF /™)
SYSTEM("RD /5 /Q C:*") //PORTRABILTY
RETORN [1,2,3,4,5]

