
Linked List Operations
What topic are you interested in investigating for

your final project?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Today’s
question

How can we write code to
examine and manipulate
the structure of linked lists?

Today’s
topics

1. Review

2. Linked List Traversal

3. Linked List Insertion

Review
[intro to linked lists]

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

Pointers move
us across this
boundary!

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

These are built
on top of
pointers!

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

What is the interface for the user?

How is our data organized?

What stores our data?
(arrays, linked lists)

How is data represented electronically?
(RAM)

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

What is a linked list?

● A linked list is a chain of nodes, used to store a sequence of data.

● Each node contains two pieces of information:
○ Some piece of data that is stored in the sequence
○ A link to the next node in the list

● We can traverse the list by starting at the first node and repeatedly following its
link.

● The end of the list is marked with some special indicator.

A linked list!

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PTR

The Node struct

struct Node {

 string data;

 Node* next;

}

Pointer to a node

0xfca0b000

list

N
od

e*

Node* list = new Node;

list->data = "someData";

list->next = nullptr;

The arrow notation (->) dereferences
AND accesses the field for pointers
that point to structs specifically.

"someData" PTR

New: Node struct constructor

0xfca0b000

list

N
od

e*

Node* list = new Node("someData", nullptr);

The Node struct also has a
conveniently defined constructor that
allows us to accomplish this in one line.

"someData" PTR

Common linked lists operations

● Traversal
○ How do we walk through all elements in the linked list?

● Rewiring
○ How do we rearrange the elements in a linked list?

● Insertion
○ How do we add an element to a linked list?

● Deletion
○ How do we remove an element from a linked list?

Implementing an ADT using a Linked List

● A linked list can be the fundamental data storage backing for an ADT in much
the same the same way an array can.

● We saw that linked lists function great as a way of implementing a stack!

● Three operations:
○ push() – List insertion and list rewiring
○ pop() – List deletion and list rewiring
○ Destructor – List traversal and list deletion

Important Takeaways

● Linked lists are chains of Node structs, which are connected by pointers.
○ Since the memory is not contiguous, they allow for fast rewiring between nodes (without

moving all the other Nodes like an array might).

● Common traversal strategy
○ While loop with a pointer that starts at the front of your list
○ Inside the while loop, reassign the pointer to the next node

● Common bugs
○ Be careful about the order in which you delete and rewire pointers!
○ It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been

deallocated but that you not longer have a pointer to)

Linked List Operations
Revisited

How can we write code to
examine and manipulate the

structure of linked lists?

Linked Lists Reframed

● On Thursday, we saw linked lists in the context of classes, where we used a
linked list as the data storage underlying an implementation of a Stack.

Linked Lists Reframed

● On Thursday, we saw linked lists in the context of classes, where we used a
linked list as the data storage underlying an implementation of a Stack.

● However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

Linked Lists Reframed

● On Thursday, we saw linked lists in the context of classes, where we used a
linked list as the data storage underlying an implementation of a Stack.

● However, linked lists are not limited only to use within classes. In fact, the next
assignment will ask you to implement "standalone" linked list functions that
operate on provided linked lists, outside the context of a class.

● This is the paradigm that we will work under for the next two days. In doing so,
we'll gain a little more flexibility to get practice with many different linked list
operations and build our linked list toolbox!

Linked List Traversal

Printing a Linked List

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();

cout << list << endl;

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt: What is the result of the following code? (Poll)
/* Creates a list with contents "Hello" -> "World" -> nullptr */

Node* list = createList();

cout << list << endl; Answer: Some memory address is
printed! We can't predict the exact value.

Inspecting Linked List Contents

● Being able to "see" the contents of a linked list is a really helpful debugging
tool!

● There are two main ways to do so: using the debugger and printing to the
console

● First attempt (directly printing list pointer) unsuccessful.

● Second attempt: Let's write a function to print the list!

printList()
Let's code it!

How does it work?

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

Nick

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xab40

Nick

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Nick

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Nick

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Nick

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Nick
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0xbc70

Nick
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Nick
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Nick
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Nick
Kylie

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Nick
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

0x40f0

Nick
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

nullptr

Nick
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

list

N
od

e*

nullptr

Nick
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

Nick
Kylie
Trip

int main() {
 Node* list = readList();
 printList(list);

 /* other list things happen... */
}

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

Nick
Kylie
Trip

Measuring a Linked
List

Measuring a Linked List

● Similar to arrays, a linked list does not have the capability to automatically
report back its own "size."

● The following code is NOT valid, since list is simply a pointer

Node* list = readList();

cout << list.size() << endl; // WRONG! BAD!

● Let's write a function that allows us to calculate the number of nodes in a
linked list!

lengthOf()
Let's code it!

Freeing a Linked List

Freeing Linked Lists

● Linked lists are built out of many different nodes, each of which have been
dynamically allocated. This means that when we're done using a list, it is
always good practice to free the memory associated with all the nodes!

Freeing Linked Lists

● Linked lists are built out of many different nodes, each of which have been
dynamically allocated. This means that when we're done using a list, it is
always good practice to free the memory associated with all the nodes!

● Freeing all the nodes requires traversing the list while safely freeing
everything along the way.

Freeing Linked Lists

● Linked lists are built out of many different nodes, each of which have been
dynamically allocated. This means that when we're done using a list, it is
always good practice to free the memory associated with all the nodes!

● Freeing all the nodes requires traversing the list while safely freeing everything
along the way.

● We've actually seen how to do this already! The IntStack destructor that we
coded up together was responsible for cleaning up all the list memory.

Freeing Linked Lists

● Linked lists are built out of many different nodes, each of which have been
dynamically allocated. This means that when we're done using a list, it is
always good practice to free the memory associated with all the nodes!

● Freeing all the nodes requires traversing the list while safely freeing everything
along the way.

● We've actually seen how to do this already! The IntStack destructor that we
coded up together was responsible for cleaning up all the list memory.

● Let's revisit how to (and how not to) accomplish this task!

Freeing Linked Lists,
the Wrong Way

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

delete

Dynamic
Deallocation!

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 /* WRONG WRONG WRONG WRONG WRONG */

 while (list != nullptr) {
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

Undefined
Behavior!

Freeing Linked Lists,
the Right Way

void freeList(Node* list) {
 while (list != nullptr) {

 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = list->next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xab40

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

0xbc70

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

N
od

e*

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Kylie" "Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0xbc70

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

N
od

e*

0x40f0

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

"Trip" PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} 0x40f0

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} nullptr

list

N
od

e*

PTR

next

N
od

e*

nullptr

void freeList(Node* list) {
 while (list != nullptr) {
 Node* next = list->next;
 delete list;
 list = next;
 }
} nullptr

list

N
od

e*

PTR

N
od

e*

nullptr

All memory
freed! Wooo!

Linked Lists and
Recursion

Rethinking Linked Lists

● On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define recursively.

Rethinking Linked Lists

● On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define recursively.

struct Node {

 string data;

 Node* next;

}

Rethinking Linked Lists

● On Thursday, we mentioned that the Node struct that defined the contents of a
linked list was define recursively.

● This struct definition gives us some insight into the fact that the overall concept
of a linked list can be expressed recursively.

struct Node {

 string data;

 Node* next;

}

Diagram created by Keith Schwarz

Diagram created by Keith Schwarz

Diagram created by Keith Schwarz

Printing a List Revisited

Printing a List Revisited

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

Printing a List Revisited

void printList(Node* list) {
 while (list != nullptr) {
 cout << list->data << endl;
 list = list->next;
 }
}

void printListRec(Node* list) {
 /* Base Case: There's nothing
to print if the list is empty. */
 if (list == nullptr) return;

 /* Recursive Case: Print the
first node, then the rest of the
list. */
 cout << list->data << endl;
 printListRec(list->next);
}

Pitfalls of Recursive List Traversal

● Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy…

Pitfalls of Recursive List Traversal

● Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy…

● Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

Pitfalls of Recursive List Traversal

● Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy…

● Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

● What is the stack frame limit on most computers?
○ You explored this on assignment 3 – for most computers it is somewhere in the range of 16-64K

Pitfalls of Recursive List Traversal

● Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy…

● Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

● What is the stack frame limit on most computers?
○ You explored this on assignment 3 – for most computers it is somewhere in the range of 16-64K

● With a recursive strategy, the size of the list we're able to process is limited by
the stack frame capacity – we can't process lists longer than 16-64K elements!

Pitfalls of Recursive List Traversal

● Recursion can be a really elegant way to write code for a list traversal!
However, recursion is not always the optimal problem-solving strategy…

● Note that the recursive solution generates one recursive call for every element
in the list, meaning that a list with n elements would require n stack frames.

● What is the stack frame limit on most computers?
○ You explored this on assignment 3 – for most computers it is somewhere in the range of 16-64K

● With a recursive strategy, the size of the list we're able to process is limited by
the stack frame capacity – we can't process lists longer than 16-64K elements!

Takeaway: Any linked list operations
involving traversal of the whole list are
better done iteratively! This holds especially
true on the assignment – don't try to
implement any of the list helper functions
recursively!

Linked List Traversal Takeaways

● Temporary pointers into lists are very helpful!
○ When processing linked lists iteratively, it’s common to introduce pointers that point to cells in

multiple spots in the list.
○ This is particularly useful if we’re destroying or rewiring existing lists.

● Using a while loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

● Iterative traversal offers the most flexible, scalable way to write utility functions
that are able to handle all different sizes of linked lists.

Announcements

Announcements (Part 1)

● Revisions for Assignment 3 opened today and will be due on Thursday, July
30 at 11:59pm PDT.

● Assignment 4 is due tonight at Monday, July 27 at 11:59pm PDT.

● Assignment 5 will be released by the end of the day tomorrow and will be due
on Tuesday, August 4 at 11:59pm PDT.

Announcements (Part 2)

● Nick’s and Kylie's group office hour times this week will be slightly modified.
○ Kylie will be hosting group OHs from 2-3:30pm PDT on Monday (today!).
○ Nick will be hosting group OHs from 12:30-3pm PDT on Tuesday.

● Come talk to us about your ideas for the final project during office hours!

● Diagnostic grades were released earlier today. Overall, everyone did really
well! Regrade requests are now open through Gradescope and must be
submitted by Wednesday, July 29 at 11:59pm.
○ These requests should only be submitted if you think the posted criteria has been

misapplied to your submission, not if you think the criteria are unfair.

Announcements (Part 3)
● Common diagnostic questions: What letter grade did I get? Is it curved?

○ We don’t want you to think about this as an exam! There won’t be a curve so you can think of
the 45 total points as making up the 10% of your overall grade.

○ BUT since the emphasis for the diagnostic was to help you understand areas for improvement,
we’re also going to give you opportunities to demonstrate growth and make up part of that 10%.

● You can receive the points back for one problem of your choice by showing
that you’ve mastered that concept through your final project.
○ You don’t have to only focus on that topic in your project, but it should be incorporated into the

problem you design.
○ Deliverable: As an add-on to the final project write-up, you’ll include a section titled “Diagnostic

Reflection” that discusses how you improved in that topic, how your final project demonstrates
your improvement, and how you would now approach the diagnostic problem differently from a
problem-solving standpoint (this does not mean reproducing the correct solution!).

Linked List Insertion

Insertion at the front
(prepend)

Prepending an Element

● Suppose we wanted to write a function to insert an element at the front of a
linked list.

Prepending an Element

● Suppose we wanted to write a function to insert an element at the front of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

Prepending an Element

● Suppose we wanted to write a function to insert an element at the front of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick""Julie"

Prepending an Element

● Suppose we wanted to write a function to insert an element at the front of a
linked list.

0x26b0

list

N
od

e*

"Kylie" "Trip" PTR"Nick""Julie"

Prepending an Element

● Suppose we wanted to write a function to insert an element at the front of a
linked list.

● This is similar to the push() function we implemented on Thursday, but now
we're writing a standalone function to do this on an arbitrary list. Let's code it!

0x26b0

list

N
od

e*

"Kylie" "Trip" PTR"Nick""Julie"

prependTo()
Let's code it!

What went wrong?

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node* list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

0x40f0

list

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

"Trip"

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

"Trip"

I just got
yeeted into
the land of
leaked
memory...

Pointers by Value

● Unless specified otherwise, function
arguments in C++ are passed by
value – this includes pointers!

● A function that takes a pointer as an
argument gets a copy of the
pointer.

● We can change where the copy
points, but not where the original
pointer points.

Pointers by Reference

Pointers by Reference

● To solve our earlier problem, we can pass the linked list pointer by reference.

Pointers by Reference

● To solve our earlier problem, we can pass the linked list pointer by reference.

● Our new function:

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

Pointers by Reference

● To solve our earlier problem, we can pass the linked list pointer by reference.

● Our new function:

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

Pointers by Reference

● To solve our earlier problem, we can pass the linked list pointer by reference.

● Our new function:

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

This is a reference to a pointer to
a Node. If we change where list
points in this function, the
changes will stick!

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

list

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

"Trip"

data

st
ri

ng

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

N
od

e*

"Trip"

data

st
ri

nglist

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

nullptr

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

nullptr

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

0x40f0

N
od

e*

PTR

void prependTo(Node*& list, string data) {
 Node* newNode = new Node;
 newNode->data = data;

 newNode->next = list;
 list = newNode;
}

0x40f0

N
od

e*

"Trip"

data

st
ri

ng0x40f0

newNode

N
od

e*
"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

0x40f0

N
od

e*

PTR

"Trip"

list

int main() {
 Node* list = nullptr;
 prependTo(list, "Trip");
 prependTo(list, "Kylie");
 prependTo(list, "Nick");
 return 0;
}

0x40f0

N
od

e*

PTR

"Trip"

I am no longer
lost – Yee
Haw!

list

Pointers by Reference Summary

● If you pass a pointer into a function by value, you can change the contents at
the object you point at, but not which object you point at.

● If you pass a pointer into a function by reference, you can also change which
object is pointed at.

● When passing in pointers by reference, be careful not to change the pointer
unless you really want to change where it’s pointing!

Insertion at the end
(append)

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

"Julie"

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

"Julie"

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

"Julie"

1. Create a cell whose
next field is nullptr.

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

"Julie"

1. Create a cell whose
next field is nullptr.

2. Find the last cell in the
list.

Appending an Element

● Suppose we wanted to write a function to add an element to the end of a
linked list.

0xab40

list

N
od

e*

"Kylie" "Trip" PTR"Nick"

"Julie"

1. Create a cell whose
next field is nullptr.

2. Find the last cell in the
list.

3. Change where the last
cell points.

appendTo()
Let's code it!

appendTo() Takeaways

● Appending to the end of a linked list has a lot of tricky edge cases!
○ We must pass the pointer by reference to account for the case where we're adding

to an empty list and need to update the head pointer.
○ We have to be careful about our while loop condition to make sure that we never

dereference a null pointer!
○ We have to be careful with our usage of pointers by reference and make sure to

maintain a local iterator pointer to traverse the list.

● Being able to reason about all of these cases becomes much easier if we draw out
diagrams and carefully trace the values of different pointers over time.
○ Note: Check out slides 56-124 of this slide deck for visualizations of the right and

wrong ways of coding up the append function!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/21/Slides21.pdf

Unresolved Issue

● What is the big-O complexity of appending to the back of a linked list using our
algorithm?

Unresolved Issue

● What is the big-O complexity of appending to the back of a linked list using our
algorithm?

● Answer: O(n), where n is the number of elements in the list, since we have to
find the last position each time.

Unresolved Issue

● What is the big-O complexity of appending to the back of a linked list using our
algorithm?

● Answer: O(n), where n is the number of elements in the list, since we have to
find the last position each time.

● This seems suspect – O(n) for a single insertion is pretty bad! Can we do
better?
○ Find out tomorrow!

Summary

Summary

● Linked lists can be used outside classes - you’ll do this on Assignment 5!

● Think about when you want to pass pointers by reference in order to edit the
original pointer and to avoid leaking memory.

● We can add to a linked list by either prepending or appending.
○ Prepending is faster but results in a reversed order of items (things added earlier

are at the back of the list)
○ Appending (as we’ve learned so far) requires traversing all items but maintains

order (things added earlier are at the front of the list)

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Finish up Linked
Lists and start
Intro to Sorting!

