Linked Lists

Is there a topic you’d like us to dive more in depth
into in the last week of the class?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we use pointers

Today'’s . .
. to organize non-contiguous
g uestion memory on the heap?

Review

Today’s
tOpiCS . What is a linked list?

How do we manipulate
linked lists?

Review

[memory and pointers]

Abstract Data
Structures

Levels of abstraction

Data Organization
Strategies

____.I_____

How is computer memory organized?

0x£ca0b000 O i

Pointers and Memory

e Every variable you create has an address in memory on your computer (either
on the stack or the heap).

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how
much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).

Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how

much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).

o But remember that pointers and what they point to (e.g. string vs.
string¥*) are two completely different data types!

Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

o E.g.int* number = int;

Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to

keep track of it.
o E.g.int* number = int; Dynamically allscated variables

are the only reason well use
,boin fers in thic clace!

Pointers and Memory

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

Pointers and Memory

e [Every variable you create has an address in memory on your computer (either
on the stack or the heap)

e A pointer is just a type of variable that stores a memory address!

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[] for arrays) and must store the address in a pointer to
keep track of it.

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).

http://www.youtube.com/watch?v=B7lVHq-cgeU

Today: Using pointers
INn practice

Today: Using pointers
INn practice

How can we use pointere to organize non-contiquous

memory on the hea,b?

Today: Using pointers
INn practice

How can we use pointere to organize

memory on the hea,b? ’K
Not arvays!

Abstract Data

What is the interface for the user?
Structures

C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
4+ Strategies
n
e
©
G
o What stores our data? Fundamental C++
% (arrays, linked lists) Data Storage
>
Q —— e = e = = ==
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O _— e == = _— s =
—
o Data Organization
E How is our data organized? 9 .
4+ Strategies
n
e
(©
G
o What stores our data? Dot Fundamental C++
2 (arrays, linked lists) ointers move Data Storage
) u¢ acrocs this
> |
Q boundary!
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O — o — e = =
—
o Data Organization
E How is our data organized? 9 .
-+ Strategies
n
e
©
G
o What stores our data? ‘ Fundamental C++
W (,) These are built Data Storage
Q on top of
> .
q) PO“’lfel’f./ ————%————
—
How is data represented electronically? Computer
(RAM) Hardware

Abstract Data

What is the interface for the user?
Structures

C
O _— —_— _— —_— —_— _— —_— -_—
—
o Data Organization
E How is our data organized? 9 .
- Strategies
n
e
(©
G
O What stores our data?
W Our Focue for
T (arrays,) codand
oday!
S Y
m _— —_— _— —_— —_— _— —_— -_—
—
How is data represented electronically? Computer
(RAM) Hardware

What is a linked list?

What is a linked list?

e A linked list is a chain of nodes.

What is a linked list?

e A linked list is a chain of nodes.

e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
o Alink to the next node in the list

What is a linked list?

e A linked list is a chain of nodes.

e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
o Alink to the next node in the list

e We can traverse the list by starting at the first node and repeatedly following its
link.

Node

Data

Link

Pointer to a node

/—> Data

|
l oooooooooo ' L|nk

Pointer to a node that points to a node

_— Data / Data
l' Link Link

Pointer to a node that points to a node that points to a node

_— Data / Data / Data
ll Link Link Link

Pointer to a node that points to a node that points to a node

Data

Link

Data

e

Link

Data

e

Link

e

pP?

A linked list!

Data

Link

Data

Link

Data

Link

Cabifornia’

NULLp

g% r/todayilearned

r i L el S . Ol
Posted by u/shaka_sulu * 8h

TIL a California man got

'NULL as a personalized \' l J L l
license plate hoping that -
'NULL would confuse the N
computer system. Instead, when cops

left the plate number info empty on a
ticket or citation, the fine went to him.
He got over $12k fines sent to him his
first year.

arstechnica.com Cobiforni

ULETR

Why use linked lists?

e More flexible than arrays!
o Since they’re not contiguous, they’re easier to rearrange.

e We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We’ll see how shortly!)

e We never have to do a massive copy step.

e Linked lists have many tradeoffs, and are not often the best data structure!

Linked lists in C++

The Node struct

struct Node {
string data;
Node* next;

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

e The compiler can handle the fact that in the definition of the Node there is a

Node* because it knows it is simply a pointer.
o (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)

Pointer to a node

/ string data
(]

"0 J0xfcaOb000

< Node* next

list

*

Node* 1list = new Node;

Pointer to a node

/ string data
*

(]

"0 J0xfcaOb000

< Node* next

list

/ﬁnva@lueufdhﬁa
these values (i.e. the
MNode itcelf)?

Node* 1list = new Node;

Pointer to a node

I
o /
B oxica0b000
Z

list

*

Node* 1list = new Node;
(*list).data = "someData";

"someData"

Node* next

Pointer to a node

E— "someData"
° /
0 JOxfcadb000
Z
Node* next

*

list
Node* list = new Node; (ce * to dereference the
(*¥list).data = "someData";

pointer to qet the Mode

ctruct.

Pointer to a node

— "someData"
o /
B 0xfca0b000
< Node* next

*

list
Node* list = new Node; Uce dot (.) notation to
(*list).data = "someData"; update the data. field of

the ctruct.

Pointer to a node

I
° /
'3 | Oxfca0b000
Z

list

*

Node* 1list = new Node;
(*list).data = "someData";
(*1list).next = nullptr;

"someData"

| |

Californa’
NL] Uﬁk

Q¢ .

Pointer to a node

I
o /
B oxica0b000
Z

list

*

Node* 1list = new Node;
(*list).data = "someData";
(*1list).next = nullptr;

. Data" Cabiforria’
someData NUL [P

Q¢ .

| |

There’c an eacier Wa.y./

Pointer to a node

I
o /
B oxica0b000
Z

list

*

Node* 1list = new Node;
list->data = "someData";
list->next = nullptr;

"someData"

| |

Californa’
NL] Uﬁk

Q¢ .

Pointer to a node

|
*
o /
B JOxfca0b000
Z

list

Node* 1list = new Node;
list->data = "someData";
list->next = nullptr;

. Data" Cabiforria’
someData NUL [P

Q¢ .

| |

[he arrow notation (— >) dereferences
AND accesces the field for pointere
that point to structe specifically.

Announcements

Announcements

e Assignment 4 is due this upcoming Monday, July 27 at 11:59pm PDT.

e Make sure to get started on reading through the final project guidelines and
brainstorming what you might want to do your project on!
o If you're interested in exploring a topic that we haven't yet covered in the
class, come by our OHs and we can help you scope the problem!

How do we manipulate
linked lists?

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

Implementing a Stack

MNote: You could do thic with an a.rmg./ This is just for the
cake of getting practice with linked lists.

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

e Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:
struct Node {
int data;
Node* next;

)
D

Three Stack operations
e push()

e pop()

e Destructor

Three Stack operations

e pop()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

o How do we rearrange the elements in a linked list?

o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

How sur finked list etarts:

Cabiforria’

— : N
™ W

top

push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

Goal:

Cabifornaa’

7 : : - NULLe
B W

top

Let’s code push()!

Live Activity Summary

e We strongly recommend watching the live recording of the coding activity, as
the code and explanations contextualize the following diagrams

Initial State (beginning of push () function)

R

?J<x£€;v~

- T TP

Node ¥ volus
W@/jy | 7

Node *temp = new Node;
temp->data = 7;

9J<MJ621&

P[] P

P
eV ol | 7 {

Node *temp = new Node;

temp->data = 7;

top = temp; // INCORRECT

Node *temp = new Node;
temp->data = 7;
temp->next = top;

Node *temp = new Node;
temp->data = 7;
temp->next = top;

top = temp;

Three Stack operations

e push()

e Destructor

Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

pop()

e Now we want to remove the top value:

myStack.pop();

Starting state of the fict:

7/

e

(-

(-

Cobiformin”

~ NULL#

(-

pop()

e Now we want to remove the top value:

myStack.pop(); // we want the result to be {9, 8}

Goal:

B . ~ NULL
- -

Let’s code pop()!

Initial State (beginning of pop () function)

T

L,

12

top = top->next; // INCORRECT

Node* temp = top;
top = top->next;
delete temp;

Three Stack operations

e push()

e pop()

Common linked lists operations

o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?

Destructor

e We have to make sure we delete all of the Nodes.

e The top pointer should be nullptr when we’re done.

(Cabiforria
—— NULLw

OxfcaOb000 '

top

[Node*]

Let’s code the
destructor!

Summary

Linked lists summary

e Linked lists are chains of Node structs, which are connected by pointers.
o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs
o Be careful about the order in which you delete and rewire pointers!
o It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

More on linked lists!

OKAY, HUMAN.

HUH? 3
BERCRE YoU

HIT (OMPILE,
YLISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU MAGINE YOURSELF
WALKING OR
M SOMETHING,

AND SUCDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAKE?

YEI/\H'. rﬁ

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

\
DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

-2

