Linked Lists
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How is computer memory organized?
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Pointers and Memory

e Every variable you create has an address in memory on your computer (either
on the stack or the heap).
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Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how
much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).




Pointers and Memory

e A pointer is just a type of variable that stores a memory address!
o You specify the type of the variable that it points to so that C++ knows how

much space the value its pointing to is taking up (e.g. string* or int* or
Vector¥*).

o But remember that pointers and what they point to (e.g. string vs.
string¥*) are two completely different data types!



Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[ ] for arrays) and must store the address in a pointer to
keep track of it.

o E.g.int* number = int;



Pointers and Memory

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[ ] for arrays) and must store the address in a pointer to

keep track of it.
o E.g.int* number = int; Dynamically allscated variables
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Pointers and Memory

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).



Pointers and Memory

e [Every variable you create has an address in memory on your computer (either
on the stack or the heap)

e A pointer is just a type of variable that stores a memory address!

e When you dynamically allocate variables on the heap, you must use the
keyword new (or new[ ] for arrays) and must store the address in a pointer to
keep track of it.

e TJo getthe value located at the memory address stored in a pointer, you must
dereference the pointer using the * operator (e.g. cout << *number << endl;).
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e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
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What is a linked list?

e A linked list is a chain of nodes.

e Each node contains two pieces of information:
o Some piece of data that is stored in the sequence
o Alink to the next node in the list

e We can traverse the list by starting at the first node and repeatedly following its
link.
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Pointer to a node that points to a node
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A linked list!
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Why use linked lists?

e More flexible than arrays!
o Since they’re not contiguous, they’re easier to rearrange.

e We can efficiently splice new elements into the list or remove existing
elements anywhere in the list. (We’ll see how shortly!)

e We never have to do a massive copy step.

e Linked lists have many tradeoffs, and are not often the best data structure!



Linked lists in C++



The Node struct

struct Node {
string data;
Node* next;




The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)




The Node struct

struct Node {
string data;
Node* next;

e The structure is defined recursively! (both the Node and the linked list itself)

e The compiler can handle the fact that in the definition of the Node there is a

Node* because it knows it is simply a pointer.
o (It would be impossible to recursively define the Node with an actual Node object inside the
struct.)
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Pointer to a node
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Pointer to a node

I
o /
B oxica0b000
Z

list

*

Node* 1list = new Node;
list->data = "someData";
list->next = nullptr;

"someData"

| |

Californa’
NL] Uﬁk

Q¢ .




Pointer to a node
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Announcements

e Assignment 4 is due this upcoming Monday, July 27 at 11:59pm PDT.

e Make sure to get started on reading through the final project guidelines and
brainstorming what you might want to do your project on!
o If you're interested in exploring a topic that we haven't yet covered in the
class, come by our OHs and we can help you scope the problem!




How do we manipulate
linked lists?



Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?



Implementing a Stack
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Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!




Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.




Stack as a linked list

e We’ll keep a pointer Node* top that points to the “top” element in our stack.
o This member var will get initialized to nullptr when our stack is empty!

e Our linked list nodes will be connected from the top to the bottom of our stack.

e Our stack will specifically hold integers, so our Node struct will hold an int
type for our data field:
struct Node {
int data;
Node* next;

)
D



Three Stack operations
e push()

e pop()

e Destructor




Three Stack operations

e pop()

e Destructor




Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

o How do we rearrange the elements in a linked list?

o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?



push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}




push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

How sur finked list etarts:
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push()

e Suppose we have the following Stack we want to push to:

Stack myStack = {9, 8}; // 8 is at the "top" of the stack
myStack.push(7); // we want the result to be {9, 8, 7}

Goal:
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Let’s code push()!



Live Activity Summary

e We strongly recommend watching the live recording of the coding activity, as
the code and explanations contextualize the following diagrams




Initial State (beginning of push () function)
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Node *temp = new Node;

temp->data = 7;
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Node *temp = new Node;
temp->data = 7;
temp->next = top;




Node *temp = new Node;
temp->data = 7;
temp->next = top;

top = temp;




Three Stack operations

e push()

e Destructor




Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?



pop()

e Now we want to remove the top value:

myStack.pop();

Starting state of the fict:
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pop()

e Now we want to remove the top value:

myStack.pop(); // we want the result to be {9, 8}

Goal:
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Let’s code pop()!



Initial State (beginning of pop () function)
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top = top->next; // INCORRECT







Node* temp = top;
top = top->next;
delete temp;




Three Stack operations

e push()

e pop()




Common linked lists operations

o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion

o How do we add an element to a linked list?

o How do we remove an element from a linked list?



Destructor

e We have to make sure we delete all of the Nodes.

e The top pointer should be nullptr when we’re done.
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Let’s code the
destructor!



Summary



Linked lists summary

e Linked lists are chains of Node structs, which are connected by pointers.
o Since the memory is not contiguous, they allow for fast rewiring between nodes (without
moving all the other Nodes like an array might).

e Common traversal strategy

o While loop with a pointer that starts at the front of your list
o Inside the while loop, reassign the pointer to the next node

e Common bugs
o  Be careful about the order in which you delete and rewire pointers!
o It’s easy to end up with dangling pointers or memory leaks (memory that hasn’t been
deallocated but that you not longer have a pointer to)



What's next?
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More on linked lists!
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