
Memory and Pointers
What pointer (aka piece of advice) would you give a

prospective CS106B student about how to be
successful in the class?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Today’s
question

How is a computer's
memory system organized?

How can we navigate and
directly manipulate
computer memory in C++?

Today’s
topics

1. Review (Priority Queues
and Heaps)

2. Computer Memory

3. Pointed Points on Pointers

Review
[priority queues and heaps]

Implementing ADT Classes

● The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

● Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to
illustrate and visualize the contents and any operations that may be done.

● The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

Levels of abstraction

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

What is the interface for the user?
(Priority Queue)

How is our data organized?
(sorted array, binary heap)

What stores our data?
(arrays)

What is a priority queue?

● A queue that orders its elements based on a provided “priority”

● Like regular queues, you cannot index into them to get an item at a particular
position.

● Useful for maintaining data sorted based on priorities
○ Emergency room waiting rooms
○ Different airline boarding groups (families and first class passengers,

frequent flyers, boarding group A, boarding group B, etc.)
○ Filtering data to get the top X results (e.g. most popular Google searches

or fastest times for the Women’s 800m freestyle swimming event)

Supported operations

● enqueue(priority, elem): inserts elem with given priority

● dequeue(): removes the element with the highest priority from the queue

● peek(): returns the element with the highest priority in the queue (no removal)

● size(): returns the number of elements in the queue

● isEmpty(): returns true if there are no elements in the queue, false otherwise

● clear(): empties the queue

What is a binary heap?

● A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

● Additional properties
○ Binary: Two children per parent (but no implied orderings between siblings)
○ Completely filled (each parents must have 2 children) except for the bottom level,

which gets populated from left to right

● Two types → which we use depends on what we define as a “higher” priority
○ Min-heap: smaller numbers = higher priority (closer to the root)
○ Max-heap: larger numbers = higher priority (closer to the root)

Binary heaps + implementation

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

{"a", 4}

{"b", 6} {"c", 8}

{"d", 7} {"e", 9}

0 1 2 3 4

Node: i
Left child: 2*i + 1
Right child: 2*i + 2

Node index: 0
Left child: 1
Right child: 2
Parent: N/A

Node index: 1
Left child: 3
Right child: 4
Parent: 0

Parent: (i-1) / 2

{"a", 5}

{"b", 10} {"c", 8}

{"d", 12} {"e", 11} {"f", 14} {"g", 13}

{"h", 22} {"i", 43}

{"a", 5} {"b", 10} {"c", 8} {"d", 12} {"e", 11} {"f", 14} {"g", 13} {"h", 22} {"i", 43} ? ? ?

0 1 2 3 4 5 6 7 8 9 10 11

peek() – O(1)

enqueue()

● Add the new element into the first empty slot in the array.

● Bubble up to regain the heap property!

● Runs in time O(log n)

dequeue()

● Remove the minimum element: the root of the tree.

● Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

● Bubble down to regain the heap property!

● Runs in time O(log n)

Summary

● Priority queues are queues ordered by priority of their elements, where the
highest priority elements get dequeued first.

● Binary heaps are a good way of organizing data when creating a priority
queue.
○ Use a min-heap when a smaller number = higher priority (what you’ll use

on the assignment) and a max-heap when a larger number = higher
priority.

● There can be multiple ways to implement the same abstraction! For both ways
of implementing our priority queues, we’ll use arrays for data storage.

Levels of abstraction

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

What is the interface for the user?
(Vector, Set, Priority Queue, etc.)

How is our data organized?
(sorted array, binary heap, tree, etc.)

What stores our data?
(arrays, linked lists, etc.)

Levels of abstraction

Abstract Data
Structures

Data Organization
Strategies

Fundamental C++
Data Storage

What is the interface for the user?
(Vector, Set, Priority Queue, etc.)

How is our data organized?
(sorted array, binary heap, tree, etc.)

What stores our data?
(arrays, linked lists, etc.)

How is a computer's memory
system organized?

Levels of abstraction
Abstract Data

Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Levels of abstraction
Abstract Data

Structures

Data Organization
Strategies

Fundamental C++
Data Storage

Computer
Hardware

The
Hardware/Software
Boundary

What is computer memory?

● A computer is a real, physical machine made up of many different components.
Collectively, we refer to these components as the computer's hardware.

What is computer memory?

● A computer is a real, physical machine made up of many different components.
Collectively, we refer to these components as the computer's hardware.

● When we write computer programs (which we refer to as software), we are
able to send specific instructions to the computer's hardware to do
calculations, store information, etc.

What is computer memory?

● A computer is a real, physical machine made up of many different components.
Collectively, we refer to these components as the computer's hardware.

● When we write computer programs (which we refer to as software), we are
able to send specific instructions to the computer's hardware to do
calculations, store information, etc.

● The programs we write all make use of a specific component of the computer's
hardware called Random Access Memory (RAM).

○ This is what we usually refer to when we talk about "computer memory."
○ C++ gives us a variety of fundamental ways to access computer hardware from our code.

Why is computer memory important?

● We've already seen the power and importance of being able to dynamically
allocate arrays and use these as data storage foundations for ADT classes.

Why is computer memory important?

● We've already seen the power and importance of being able to dynamically
allocate arrays and use these as data storage foundations for ADT classes.

● Being able to directly work with computer memory opens up the doors to even
more interesting data storage and organization techniques (beyond arrays).

Why is computer memory important?

● We've already seen the power and importance of being able to dynamically
allocate arrays and use these as data storage foundations for ADT classes.

● Being able to directly work with computer memory opens up the doors to even
more interesting data storage and organization techniques (beyond arrays).

● After today's lecture, we'll spend the next two weeks talking about linked data
structures, which are a powerful, alternative way to impose structure and
meaning on data that is scattered over different places in computer memory.
○ In order to understand linked data structures, we first need to develop our toolbox

of working directly with computer memory in C++!

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

● Memory can be thought of as a giant collective pool of boxes (or suitcases, to
stay on thematic trend) in which we can store information.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

● Memory can be thought of as a giant collective pool of boxes (or suitcases, to
stay on thematic trend) in which we can store information.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

● Memory can be thought of as a giant collective pool of boxes (or suitcases, to
stay on thematic trend) in which we can store information.

● Question: How can we communicate with the computer to find exactly which
box we want to access/store information in?

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

● Memory can be thought of as a giant collective pool of boxes (or suitcases, to
stay on thematic trend) in which we can store information.

● Question: How can we communicate with the computer to find exactly which
box we want to access/store information in?
○ Key Idea: Each box can be located using the computer's internal

organization system, in which each box has an associated numerical
location, called a memory address.

How is computer memory organized?

● Let's build a mental model of how data is organized in computer memory.

● Memory can be thought of as a giant collective pool of boxes (or suitcases, to
stay on thematic trend) in which we can store information.

● Question: How can we communicate with the computer to find exactly which
box we want to access/store information in?
○ Key Idea: Each box can be located using the computer's internal

organization system, in which each box has an associated numerical
location, called a memory address.
■ Just like a normal address, this value tells us where the box is located!

Memory Addresses

string pet = "cat";

Memory Addresses

"cat"

st
ri

ngstring pet = "cat";

pet

Memory Addresses

"cat"

st
ri

ngstring pet = "cat";

pet

0xfca0b000

Memory Addresses

"cat"

st
ri

ngstring pet = "cat";

pet

0xfca0b000

The memory address of pet is
0xfca0b000. This special numerical
value acts as the unique identifier for
this variable across the entire pool of
the computer's memory.

Memory Addresses

"cat"

st
ri

ngstring pet = "cat";

pet

0xfca0b000

How is this value determined?

The computer (operating system)
determines the address, not you!

Memory Addresses

"cat"

st
ri

ngstring pet = "cat";

pet

0xfca0b000

Is that really a number? Why is
preceded by 0x and have letters in it?

Let's talk (briefly) about hexadecimal!

The Hexadecimal Number System

● Normally, we represent numbers using the decimal (base-10) number system.
○ Each place value represents a factor of ten (ones, tens, hundreds, etc.) and there are 10 digits.

The Hexadecimal Number System

● Normally, we represent numbers using the decimal (base-10) number system.

● In computer systems, there a number of factors that make it more convenient
to express numbers using the hexadecimal (base-16) number system.

○ Each place value represents a factor of 16 (160, 161, 162, etc.) and there are 16 "digits."
○ Since there are only 10 numerical digits (0-9), this system also uses the letters a to f as "digits."
○ 0 1 2 3 4 5 6 7 8 9 a(10) b(11) c(12) d(13) e(14) f(15)

The Hexadecimal Number System

● Normally, we represent numbers using the decimal (base-10) number system.

● In computer systems, there a number of factors that make it more convenient
to express numbers using the hexadecimal (base-16) number system.

● The prefix 0x is used to communicate that a number is being expressed in
hexadecimal.

The Hexadecimal Number System

● Normally, we represent numbers using the decimal (base-10) number system.

● In computer systems, there a number of factors that make it more convenient
to express numbers using the hexadecimal (base-16) number system.

● The prefix 0x is used to communicate that a number is being expressed in
hexadecimal.

● In the end, remember that the specific address values have no special
meaning to us, since they're always generated by the computer. This is mostly
just a fun aside!

Memory Organization Summary

● Every location in memory, and therefore every variable, has an address.

● Every address corresponds to a unique location in memory.

● The computer generates/knows the address of every variable in your program.

● Given a memory address, the computer can find out what value is stored at
that location.

Memory Organization Summary

● Every location in memory, and therefore every variable, has an address.

● Every address corresponds to a unique location in memory.

● The computer generates/knows the address of every variable in your program.

● Given a memory address, the computer can find out what value is stored at
that location.

How can we actually work with memory addresses in C++ to
read and manipulate computer memory?

Memory Organization Summary

● Every location in memory, and therefore every variable, has an address.

● Every address corresponds to a unique location in memory.

● The computer generates/knows the address of every variable in your program.

● Given a memory address, the computer can find out what value is stored at
that location.

How can we actually work with memory addresses in C++ to
read and manipulate computer memory?

Pointers!

Announcements

Announcements

● Assignment 4 is due this upcoming Monday, July 27 at 11:59pm PDT.

● Make sure to get started on reading through the final project guidelines and
brainstorming what you might want to do your project on!
○ If you're interested in exploring a topic that we haven't yet covered in the

class, come by our OHs, and we can help you scope the problem!

How can we navigate and
directly manipulate computer

memory in C++?

How can we navigate and
directly manipulate computer

memory in C++?
Pointers!

Pointers

● A pointer is a new data type that allows us to work directly with computer
memory addresses.

Pointers

● A pointer is a new data type that allows us to work directly with computer
memory addresses.

● Just like all other data types, pointers take up space in memory and store
specific values.

Pointers

● A pointer is a new data type that allows us to work directly with computer
memory addresses.

● Just like all other data types, pointers take up space in memory and store
specific values.

● A pointer always stores a memory address, telling us where in the computer's
memory to look for a certain value.

Pointers

● A pointer is a new data type that allows us to work directly with computer
memory addresses.

● Just like all other data types, pointers take up space in memory and store
specific values.

● A pointer always stores a memory address, telling us where in the computer's
memory to look for a certain value.

● In doing this, they quite literally "point" to another location on your computer.

What is a pointer?

A memory address!

Moving Beyond Arrays

● We've already worked with pointers in the context of dynamically allocated
arrays.

● However, pointers can be used to do so much more!

Introduction to Pointers

"cat"

st
ri

ng

pet

0xfca0b000

string pet = "cat";

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

0xfca0b000

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

0xfca0b000

This “function" doesn't really
exist but we'll resolve that
soon enough!

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

0xfca0b000

0xfca0b000

st
ri

ng
*

petPointer

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

0xfca0b000

0xfca0b000

st
ri

ng
*

petPointer

We generally use an arrow to
“point" from a pointer to the
variable it points to.

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

st
ri

ng
*

petPointer

In fact, the specific memory address
values don't actually matter. It is just the
associated pointer/pointee relationship we
care about.

Introduction to Pointers

"cat"

st
ri

ng

string pet = "cat";

string* petPointer = addressOf(pet);
pet

st
ri

ng
*

petPointer

This visual relationship is key to
understanding pointers. The best way to
learn pointers is to draw lots of pictures!

What is a pointer?

A memory address!

Pointer Syntax

Pointer Syntax

● Pointer syntax can get really tricky! Our goal in this class is to give you a brief,
holistic overview. To truly become a master of pointers, take CS107!

● Let's talk about 4 main components of pointer syntax.

Pointer Syntax (Part 1)

● To declare a pointer of a particular type, use the * (asterisk) symbol:

string* petPtr; // declare a pointer to a string

int* agePtr; // declare a pointer to an int

char* letterPtr; // declare a pointer to a char

Pointer Syntax (Part 1)

● To declare a pointer of a particular type, use the * (asterisk) symbol:

string* petPtr; // declare a pointer to a string

int* agePtr; // declare a pointer to an int

char* letterPtr; // declare a pointer to a char

● Important Note: The type for petPtr is string* and not string. A pointer
type is distinct from the pointee type.

Pointer Syntax (Part 2)

● When initializing a pointer, we can use the & (ampersand) operator to get the
address of the variable that we want to point to

Pointer Syntax (Part 2)

● When initializing a pointer, we can use the & (ampersand) operator to get the
address of the variable that we want to point to

string pet = "cat";

string* petPointer = &pet;

Pointer Syntax (Part 2)

● When initializing a pointer, we can use the & (ampersand) operator to get the
address of the variable that we want to point to

● Note: This is not the same as using a reference parameter. Same symbol but
very different meanings! Oh C++...

string pet = "cat";

string* petPointer = &pet;

Pointer Syntax (Part 2)

● When initializing a pointer, we can use the & (ampersand) operator to get the
address of the variable that we want to point to

● Note: This is not the same as using a reference parameter. Same symbol but
very different meanings! Oh C++...

● By the way: you should never need to do this in code you write in CS106B!
You'll use it more in CS 107, but if you find yourself using it in this class,
reconsider your reason for using it.

string pet = "cat";

string* petPointer = &pet;

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

● We're familiar with this in the context of arrays:

int* elements = new int[5];

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

● We're familiar with this in the context of arrays:

int* elements = new int[5];

in
t *

elements

Stack Heap

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

● But C++ also allows us to dynamically allocate space for just a single variable

int* singleNumPointer = new int;

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

● But C++ also allows us to dynamically allocate space for just a single variable

int* singleNumPointer = new int;

in
t *

singleNumPointer

in
t

Stack Heap

Pointer Syntax (Part 3)

● Pointers can be used to store the value generated by the new keyword (which
is just a memory address).

● But C++ also allows us to dynamically allocate space for just a single variable

int* singleNumPointer = new int;

● The usefulness of this will become apparent starting tomorrow when we start
our discussion of linked data structures.

Aside: Endearing C++ Quirks

● If you allocate memory using the new[] operator (e.g. new int[137]), you
have to free it using the delete[] operator.

delete[] ptr;

● If you allocate memory using the new operator (e.g. new int), you have to
free it using the delete operator.

delete ptr;

● Make sure to use the proper deletion operation. Mixing these up leads to
bad, undefined behavior!

Pointer Syntax (Part 4)

● To read or modify the variable that a pointer points to, we use the * (asterisk)
operator to dereference the pointer.

Pointer Syntax (Part 4)

● To read or modify the variable that a pointer points to, we use the * (asterisk)
operator to dereference the pointer.

● Dereferencing a pointer involves following the arrow to the memory location at
the end of the arrow and then reading or modifying the value stored there.

Pointer Syntax (Part 4)

● To read or modify the variable that a pointer points to, we use the * (asterisk)
operator to dereference the pointer.

● Dereferencing a pointer involves following the arrow to the memory location at
the end of the arrow and then reading or modifying the value stored there.

string* petPtr;
string pet = "cat";
petPtr = &pet;
cout << *petPtr << endl;

st
ri

ng
 *

petPtr

st
ri

ng

pet

"cat"

Pointer Syntax (Part 4)

● To read or modify the variable that a pointer points to, we use the * (asterisk)
operator to dereference the pointer.

● Dereferencing a pointer involves following the arrow to the memory location at
the end of the arrow and then reading or modifying the value stored there.

string* petPtr;
string pet = "cat";
petPtr = &pet;
cout << *petPtr << endl;
*petPtr = "dog"; st

ri
ng

 * st
ri

ng

pet

"cat"

petPtr

Pointer Syntax (Part 4)

● To read or modify the variable that a pointer points to, we use the * (asterisk)
operator to dereference the pointer.

● Dereferencing a pointer involves following the arrow to the memory location at
the end of the arrow and then reading or modifying the value stored there.

string* petPtr;
string pet = "cat";
petPtr = &pet;
cout << *petPtr << endl;
*petPtr = "dog"; st

ri
ng

 * st
ri

ng

pet

"dog"

petPtr

Pointer Tips

Pointer Tips

● Working with pointers and direct memory access can be very tricky!

● You must always be hyper-vigilant about what is pointing where and what
pointers are valid before trying to dereference them.

● Here's a couple helpful tips to keep in mind when working with pointers...

Pointer Tips (Part 1)

● What do we do if we want to declare/initialize a pointer variable but we don't
yet have anything to point it at?

Pointer Tips (Part 1)

● What do we do if we want to declare/initialize a pointer variable but we don't
yet have anything to point it at?

string* petPtr;

Pointer Tips (Part 1)

● What do we do if we want to declare/initialize a pointer variable but we don't
yet have anything to point it at?

string* petPtr;

st
ri

ng
 *

petPtr

This is dangerous
and unpredictable!

Pointer Tips (Part 1)

● What do we do if we want to declare/initialize a pointer variable but we don't
yet have anything to point it at?

● To ensure that we can tell if a pointer has a valid address or not, set your
declared pointer equal to the special value nullptr, which means "no valid
address."

Pointer Tips (Part 1)

● What do we do if we want to declare/initialize a pointer variable but we don't
yet have anything to point it at?

● To ensure that we can tell if a pointer has a valid address or not, set your
declared pointer equal to the special value nullptr, which means "no valid
address."

string* petPtr = nullptr;

st
ri

ng
 *

nullptr

petPtr

This allows for safe,
consistent behavior.
No arrow means no
valid address.

Pointer Tips (Part 2)

● How can we tell if a pointer is safe to use (dereference)?

Pointer Tips (Part 2)

● How can we tell if a pointer is safe to use (dereference)?

● If you are unsure if your pointer holds a valid address, you should check for
nullptr!

Pointer Tips (Part 2)

● How can we tell if a pointer is safe to use (dereference)?

● If you are unsure if your pointer holds a valid address, you should check for
nullptr!

void printPetName(string* petPtr) {
 if (petPtr != nullptr) {
 cout << *petPtr << endl; // prints out the value pointed to by petPtr
 // if it is not nullptr
 } else {
 cout << "petPtr is not valid!" << endl;
 }
}

Positively Practical
Pointer Practice

Getting Practice with Pointers

● The little boxes (suitcases) and arrows that we draw to show the state of the
memory are so, so important to understanding what is happening.

● Always draw box and arrow diagrams when working with pointers!

● As with most things, the best way to build an understanding of pointers is to
practice, practice, practice!

○ The published code project for today has a bunch of pointer examples. We strongly
recommend reading the code, predicting the output, and then running the code to confirm your
predictions!

○ To finish off lecture today, we'll work through a couple of the examples together, building up
diagrams as we go.

Pointer Practice (Part 1)

int* numPtr = nullptr;

in
t *

numPtr

nullptr

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

in
t *

numPtr

nullptr

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

in
t *

numPtr

nullptr

in
t

num

106

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

in
t *

numPtr

in
t

num

106

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

in
t *

numPtr

in
t

num

106
At this point, we say that
numPtr “points to" num

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

cout << *numPtr << end;

in
t *

numPtr

in
t

num

106

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

cout << *numPtr << end; // 106

in
t *

numPtr

in
t

num

106

By dereferencing numPtr we
can print out the value of the
variable that it points to.

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

cout << *numPtr << end;

*numPtr = 198;

in
t *

numPtr

in
t

num

106

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

cout << *numPtr << end;

*numPtr = 198;

in
t *

numPtr

in
t

num

198

Pointer Practice (Part 1)

int* numPtr = nullptr;

int num = 106;

numPtr = #

cout << *numPtr << end;

*numPtr = 198;

in
t *

numPtr

in
t

num

198

Dereferencing numPtr can also allow
us to modify the value of the
variable/memory it points to.

What is a pointer?

A memory address!

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

st
ri

ng
*

stringPtr

nullptr

st
ri

ng

s

"hello"

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

st
ri

ng
*

stringPtr

nullptr

st
ri

ng

s

"hello"

Seg
Fault!

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

st
ri

ng
*

stringPtr

nullptr

st
ri

ng

s

"hello"

Seg
Fault!

When you dereference a nullptr,
you encounter a segmentation
fault, and the program crashes!

Pointer Practice (Part 2)

● What is the output of the following code snippet? (Zoom Poll)

string* stringPtr = nullptr;

string s = "hello";

cout << *stringPtr << endl;

st
ri

ng
*

stringPtr

nullptr

st
ri

ng

s

"hello"

Seg
Fault!

Takeaway: Always use a nullptr
check before dereferencing a
pointer.

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

nullptr

st
ri

ng
*

strPtr2

nullptr

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

nullptr

st
ri

ng
*

strPtr2

nullptr

st
ri

ng

s

"hello"
0xf400

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

0xf400

st
ri

ng
*

strPtr2

nullptr

st
ri

ng

s

"hello"
0xf400

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

0xf400

st
ri

ng
*

strPtr2

0xf400

st
ri

ng

s

"hello"
0xf400

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

0xf400

st
ri

ng
*

strPtr2

0xf400

st
ri

ng

s

"goodbye"
0xf400

Pointer Practice (Part 3)

● What is the output of the following
snippet of code? (Zoom Poll)

string* strPtr1 = nullptr;
string* strPtr2 = nullptr;

string s = "hello";
strPtr1 = &s;
strPtr2 = strPtr1;

*strPtr1 = "goodbye";

cout << *strPtr1 << " "
 << *strPtr2 << endl;

st
ri

ng
*

strPtr1

0xf400

st
ri

ng
*

strPtr2

0xf400

st
ri

ng

s

"goodbye"
0xf400

goodbye goodbye

Fun with Binky

A CS106A Throwback

● Some of you in this class may have taken CS106A with Nick Parlante, one of
the intro CS lecturers here at Stanford.

● Back in 1999, he created a stop-motion claymation video starring a character
named Binky that has been a staple of explaining pointers in intro CS classes
at Stanford ever since.

● We've worked hard today and covered a lot of new material, so let's finish off
by enjoying this fun throwback video...

http://www.youtube.com/watch?v=B7lVHq-cgeU

Summary

Memory and Pointers

● All variables in a computer program are stored in computer memory and can
each be uniquely identified by their numerical memory address.

● Pointers are a special type of variable that store memory addresses.

● Pointers are especially useful as a tool to store the location of dynamically
allocated memory (both arrays and individual elements) acquired with new

● The dereference operator allows us to access and modify the memory pointed
to by a pointer.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Introduction to Linked Lists

