
Multithreading and Parallel
Computing

What do you think Trip has been up to this quarter?
(wrong answers only in the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

 Where the heck
are we now?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

 Where the heck
are we now?

Life after CS106B!

A picture you’ll see again...

A picture you’ll see again...

You are
here!

A picture you’ll see again...

Multithreading!
CS140
Operating
Systems

A picture you’ll see again...

Multithreading!
CS140
Operating
Systems

But I think you’ll see why it was taught
formally 106B in quarters of yore :)

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload safely?

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload safely?

woah.

Today’s
question

How can we harness the
cores in our computer in
order to parallelize a
workload safely?

Multip
le cores?

Parallelize work??

Today’s
topics

1. Review (short!)

2. Some Computer
Architecture (Threads &
Processors)

3. Thread Safety

Review (short!)
(simple code flow)

How code is run

● How does the computer read and
run your code?
○ Logically, it should read your code

from top to bottom!

How code is run

● How does the computer read and
run your code?
○ Logically, it should read your code

from top to bottom!

...but who is it? What’s the thing that
encapsulates and runs your code?

Definition

thread
An abstraction that represents a sequential

execution of code.

Definition

thread
An abstraction that represents a sequential

execution of code.

Line by line, top
to bottom!

Definition

thread
An abstraction that represents a sequential

execution of code.

Anything that’s
code!

How to think about threads

● When talking about a thread, you’ll very frequently see it
referenced as a “thread of execution.”

○ Think about the line on the right as a program’s execution. You start
at main(), which might call other functions, which might return to
main() or call other helper functions. Although the execution flow of
your program may involve many function calls, it will eventually go
from the top of main() to the bottom.

○ The flow would almost looks like a thread, or a piece of string!

code start

code end

Thread examples

● Right now, your computer probably has a few threads running right now!
○ What are some examples of threads running on your PC?

Thread Examples

● Are you on Zoom right now?

Thread Examples

● Are you on Zoom right now?

Thread Examples

● Do you have a web browser open? (Chrome, Safari?)

Thread Examples

● Do you have a web browser open?

*unless you’re using Chrome, sort of.

https://medium.com/@abhinavkorpal/multiprocess-architecture-chrome-browser-50e7c3c27722

Thread Examples

● Are you watching TikToks during lecture?

Thread Examples

I have been told Ms. D’Ameli is a TikTok #influencer

● Are you watching TikToks during lecture?

Question:
How many threads do you think my computer

had active when I was making this slide?

Thread examples

● Right now, your computer is executing a bunch
of threads!

○ At the time of making this slide show, my computer was
handline 3473 threads!

● Many large programs (your web browsers!)
need multiple threads to run. That’s because
they have so many moving parts!

Question:
When you run a program in Qt Creator, is a

thread executing your code?

Answer:
Er… Yes, sort of!

Answer:
Er… Yes, sort of!

Yes, when you run a program in Qt, a thread
encapsulating your code is being executed.

Answer:
Er… Yes, sort of!

Yes, when you run a program in Qt, a thread
encapsulating your code is being executed.

However, a thread alone isn’t enough to run
your code!

software
Programs and and abstractions (code). Not a

physical entity.

Definitions

hardware
Physical parts of a computer.

The hardware-software boundary

● A thread alone cannot run your program.
○ A thread is just software that is an abstraction for some code.

● A thread needs to work with the computer’s hardware in order to run
the code it encapsulates!

The hardware-software boundary

● A thread alone cannot run your program.
○ A thread is just software that is an abstraction for some code.

● A thread needs to work with the computer’s hardware in order to run
the code it encapsulates!

… but what piece of hardware does this?

CPU (Central Processing Unit)
A piece of hardware responsible for executing
instructions that make up a computer program

Definitions

Core
An individual processor inside of a CPU. Each
core is able to execute code independently of

other cores.

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

Inside a CPU...

Don’t worry about the other stuff -- we just care about the cores!

How many concurrent
programs can this CPU
run?

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Let’s assume this computer has a
CPU with only one core.

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Core is free!

Question: if the core is free,
how is anything getting done :o

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2

Core is busy!!

Threads ‘n cores

● In order for a thread to be able to execute some code, it must be
running on a CPU core.

● If all cores are currently busy, a thread must wait for a core to free up
before it can hop on that core and begin executing its own code!

Single Core CPU

Thread 1Thread 2Thread 3

Waiting
threads

Question:
Who decides how long a thread should be able to run on a

processor? Who decides which thread should run next?

What was running when the single-core was free in the
example???

Definition

Operating System
Code that manages the relationship between

a computer’s hardware and software.

Thread Scheduling

● The Operating System, determines both how long a thread should
run on a core, AND which thread should run next.
○ Want to learn how to implement these strategies? Take CS140!

● For the purposes of this lecture, let’s assume that a thread will run on a
core until its program terminates or it is forced off the processor.
○ There are many reasons why a thread may be booted from a core: sometimes the

operating system deems a thread needs to vacate its spot, and other times a
thread will voluntarily yield its core.

Code example

● Let’s take a break from all of this low-level jazz and write a simple
program!

● Let’s say you wanted to revise your A2 Search Engine program by
cheating and making it ping the internet with queries.
○ Such a task is called I/O Bound, because the performance

bottleneck is the waiting that happens between sending your
request and getting your data! (We call this, and anything
involving communication with the outside world, I/O)

Code example

● Let’s write a program that repeatedly executes the below I/O
bound function. (Forget the search engine thing; that’s just an
example of such a task).

● I’ve already implemented task for you; all you need to do is call it
repeatedly!

Code example

● Let’s write a program that repeatedly executes an I/O bound
function. (Forget the search engine thing, let’s just say it’s any old
I/O bound function).

● I’ve already written the I/O bound function for you; all you need to
do is call it repeatedly and store the many return values in a Vector.

● Let’s do it!

Code example

● What happened there?

Code example

● What happened there?
○ Our code was slow as heck! This shouldn’t be surprising,

however. Here’s what happened:

Code example: what happened?

CPU

Before you run your
program, your CPU is
probably chugging
away at other tasks!

Code example: what happened?

CPU
main()

Code example: what happened?

CPU

main()

main() is a pretty
important thread, so it
has the power to boot
another thread off a
core!

Code example: what happened?

CPU

main()

This transition is where your tuition money is going...

Code example: what happened?

CPU

main()

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the thread
will remove itself from the processor, as it is waiting on an I/O and
therefore unable to do any work. Another thread will take its place
immediately.

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the thread
will remove itself from the processor, as it is waiting on an I/O and
therefore unable to do any work. Another thread will take its place
immediately.

Question for
yourselves: why does
self-removal make
sense here?

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the thread
will remove itself from the processor, as it is waiting on an I/O and
therefore unable to do any work. Another thread will take its place
immediately.

Code example: what happened?

CPU

main()

● When you call the I/O bound function task() from main(), the thread
will remove itself from the processor, as it is waiting on an I/O and
therefore unable to do any work. Another thread will take its place
immediately.

Code example: what happened?

CPU

main()

● When the I/O bound task completes, your thread will attempt to get
back on a core as soon as possible in order to continue (but its order in
line is up to your Operating System)

Code example: what happened?

CPU

main()

● When the I/O bound task completes, your thread will attempt to get
back on a core as soon as possible in order to continue (but its order in
line is up to your Operating System)

A vacancy!

Code example: what happened?

CPU

main()

● When the I/O bound task completes, your thread will attempt to get
back on a core as soon as possible in order to continue (but its order in
line is up to your Operating System)

Note how we’re
core agnostic.
This doesn’t
need to be the
case in some
OS schedulers.

Questions about these events?

CPU

main()

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()
○ Can we do better?

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()
○ Can we do better?

○ But first...

Announcements

Announcements

● Make sure to sign up for a final presentation time slot if you haven't already!

● Assignment 6 is due tomorrow at 11:59pm PDT. Remember that this is a hard
deadline and there is no grace period!

● In lecture tomorrow, we will be having an "Ask Us Anything" component for the
last part of lecture. We'll be collecting questions in advance as well – if you
have any burning inquiries on your mind, go ahead and fill out this Google
form!

● Remember that there is no section this week!

https://forms.gle/qcvJQ1S7FP68BmcP7
https://forms.gle/qcvJQ1S7FP68BmcP7

Back to the action!

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()
○ Can we do better?

Code example: what happened?

● This process of getting on a core, removing ourselves and waiting,
and reacquiring a core happened every time we called task()
○ Can we do better?

● In the words of a sectionee last quarter…
○ “Let’s parallelize this bad boy”

Multithreading

● Let’s try and implement this same routine using multithreading.
○ That means we’ll try and use multiple threads instead of one

in order to parallelize the workflow!

Multithreading

● Let’s try and implement this same routine using multithreading.
○ That means we’ll try and use multiple threads instead of one

in order to parallelize the workflow!
● Before you can make threads, you’ll first need to:

#include <thread>

● Bonus points: this is a standard c++ library, so no Stanford-only
woes!

Multithreading

● To instantiate a thread, it’s pretty simple!

 thread newthread = thread(funcName);

● This should look pretty vanilla, except for the parameter!
○ funcName is the name of a the function you want to

execute!

Multithreading

● To instantiate a thread, it’s pretty simple!

 thread newthread = thread(funcName);

● This should look pretty vanilla, except for the parameter!
○ funcName is the name of a the function you want to

execute!
○ Let’s make new threads that encapsulate task()!

Thread joining

● Woah woah woah, hold your horses, eager beaver.
● As soon as you instantiate a thread, it begins to run.

Thread joining

● Woah woah woah, hold your horses, eager beaver. Two things to think
about:
○ As soon as you instantiate a thread, it begins to run. Be sure

you’re ready before you dispatch them.
○ Threads are somewhat resource intensive, so when we dispatch

them, we need to keep track of them so that we can clean up their
memory once they’ve completed.
■ This is very much like the new and delete keywords you’ve

used!

Thread joining

● After you’ve spawned a thread, simply call threadName.join() to clean
it up.
○ This usually requires storing your threads in a collection! Note:

Stanford’s Vector can’t store threads because it needs an update :(

Questions about creating / joining threads?

● You can call join() from your main() thread immediately after spawning
the thread. Don’t worry, main() will wait for your thread to finish :).

● To pass params to a thread, just include them as the subsequent
parameters.

Let’s Parallelize!

What happened?

● Wow, that was super fast!

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

worker 1
main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPU

worker 1
main()

What happened?

● When our main() thread spawned up a new thread, the new thread might
have taken a new core on the processor!

○ note* we don’t know exactly what happened, but it could have done this!

CPUworker 1

main()

What happened?

● Note now that both main() and worker 1 are running concurrently!

CPUworker 1

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced

CPUworker 1

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced

CPU

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?

CPU

main()

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?

CPU

main()
worker 2

What happened?

● Worker 1 will start its I/O and remove itself from the core, getting replaced
● But lo! Who is that in the distance?
● While worker 1 was waiting for its I/O, main() was busy spinning up new

threads!

CPU

main()

worker 2

What happened?

● This process will continue -- each worker thread will only need to be on a core
for a fraction of a second, just to set up the I/O, and then it can leave the
processor and let a new worker thread set up its I/O.

CPU

main()

worker 2

What happened?

● A similar thing will happen at completion time!
○ Each thread will be able to retake a core, but the core will only be needed for a few

instructions! Then the task() will finish, and a new thread will try and complete!

CPU

main()

worker 2

What happened?

CPU

main()

worker 2

● A fair warning -- you can’t predict which worker thread will begin working first!
It might seem like worker 1 should always start first, but the OS and CPU work
in unpredictable ways!

What happened?

● The example you saw was blazing fast because the task at hand
only needed to be on the processor for a short period of time.

● As you can see, the process of yielding a core to another worker
takes an almost imperceptible amount of time!
○ That’s because your OS is doing it constantly :o

● Parallelization is less successful when you don’t have long I/O
waits.
○ Take CS140 to find out more :)

Questions?

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!
● It’s easy! Just add a print statement inside inside task() and keep a counter

variable!

Bonus! Race Conditions

● Remember when I said that we can’t really determine the order that threads
will run in? Let’s show that!

● Let’s add logging to our code to show the order that threads show up!
● It’s easy! Just add a print statement inside inside task() and keep a counter

variable!

● Let’s try it!

woah...

Definition
Race Condition

A bug that is the product of two threads
“racing” against each other and operating on

the same state in the incorrect order.

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!
○ Every time you printed to the console, you had some jumbling of

all 10 cout statements!

Bonus: Race Conditions

● Congratulations, you’ve experienced your first race condition!
● It turns out that cout is not thread-safe, meaning that it will not behave

predictably if you have multiple threads calling it at the same time!
○ Every time you printed to the console, you had some jumbling of

all 10 cout statements!

● How can we fix this?

Definition
Atomic

A state that can only be observed or
superseded before or after an operation

occurs, not during.

Mutex

● To make code atomic, we can use something called a mutex.
○ Sounds like Mut(ual) Ex(clusion)!

Mutex

● To make code atomic, we can use something called a mutex.
○ Sounds like Mut(ual) Ex(clusion)!

● To make a mutex, you’ll need this library:

#include <mutex>

● and you’ll want to declare a single mutex like this:

mutex m;

Mutex

● You’ll want to make a single mutex, and pass it as a pointer to your worker
threads.

thread t = thread (funcName, &mutexName);

● In order to make code atomic, all you need to do is wrap the code in question
around these two statements:

mutexName->lock();

mutexName->unlock();

Mutex

● In order to make code atomic, all you need to do is wrap the code around
these two statements:

mutexName->lock();

mutexName->unlock();

● When you lock a mutex, any other threads trying to lock that mutex will be
forced to wait until you unlock it.

○ Once you unlock, the Operating System decides which thread can lock the mutex next!

Let’s try it!

We’re still not done!?

● Why is everything 10?

We’re still not done!?

● Remember how we passed id by reference? (using a pointer)
● The problem is that the threads share the variable “i”
● This actually indicates that main() finished the for loop that created all ten

threads (therefore increasing i to the max value) before a single worker could
complete.

○ This should make sense because even the first worker had to wait a full second before it could
print anything!

We’re still not done!?

● Remember how we passed id by reference? (using a pointer)
● The problem is that the threads share the variable “i”
● This actually indicates that main() finished the for loop that created all ten

threads (therefore increasing i to the max value) before a single worker could
complete.

○ This should make sense because even the first worker had to wait a full second before it could
print anything!

● How do we fix this?

Final thoughts

● Multithreading is an incredibly powerful tool that lets you parallelize work
among your CPU’s cores.

● Threads are a fundamental building block of computing that play an important
role in Operating Systems!

● When using multiple threads, be wary of any data that is shared between
them.

○ Using a mutex allows you to enforce atomicity in sections of code, but sometimes even that
isn’t enough!

○ If all of your code is atomic, there’s no parallelization at all!

● If you liked this topic, CS110 and CS140 (and CS149) go into more depth :)

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Life after CS106B!

